Featured Research

from universities, journals, and other organizations

Probing how pancreatic cancers metastasize

Date:
March 25, 2013
Source:
University of North Carolina School of Medicine
Summary:
Researchers have discovered that a protein found in the cells surrounding pancreatic cancers play a role in the spread of the disease to other parts of the body.

Dot-like invadopodia assemble into circular groups known as “rosettes” inside cancer-associated fibroblasts (CAFs) grown from a human pancreas tumor. CAFs utilize palladin-containing invadopodia to help the cancer cells move across tissue boundaries.
Credit: Image courtesy of University of North Carolina School of Medicine

Researchers at the University of North Carolina at Chapel Hill have discovered that a protein found in the cells surrounding pancreatic cancers play a role in the spread of the disease to other parts of the body.

In a finding to be published in the March 25 issue of Oncogene, researchers in the lab of Carol Otey, PhD, found that the protein palladin enhances the ability of cancer-associated fibroblasts (CAFs) to assemble organelles known as invadopodia to break down the barriers between cells and create pathways for tumors to spread throughout the body. Otey is a professor in the Department of Cell Biology and Physiology and a member of UNC Lineberger Comprehensive Cancer Center.

"There's a growing body of literature that shows that these cells have a role in cancer formation and metastasis," said Otey.

Using both enzymatic action and physical force, the invadopodia create channels for tumor cells to migrate from their point of origin to other organs. Otey said that researchers, using cultured cancer cells suspended between layers of collagen, have been able to observe CAFs tunneling through the collagen layer and record cancer cells migrating through those channels.

In previous studies, researchers in the Otey lab and other labs have shown that CAFs surrounding pancreatic tumors express high levels of palladin. In healthy tissue, fibroblasts are the most common type of connective tissue found in mammals. In cancerous cells, CAFs are the most numerous cells found in the tumor microenvironment.

Researchers have begun focusing significant attention to the tumor microenvironment, as evidence grows that the cells and proteins found outside of cancer cells play a crucial role in tumor formation, growth and metastasis. Understanding the interplay between the microenvironment and the tumors could lead to new targets for treatment and screening, especially in cancers that are resistant to therapies that directly target the cancerous cells.

"Cells seem to be partnering together to form the tumor and promote its growth," said Otey.

Using pharmacological inhibitors and gene-silencing approaches, Otey and the research team discovered that disrupting palladin in CAFs reduced the ability of the cells to form invadopodia. Increasing the level of palladin in CAFs, by contrast, increased the rate of growth and metastasis of tumors in mouse models. Their results indicate that palladin may be part of a molecular pathway that includes two additional molecules, protein kinase C and Cdc42.

"These results demonstrate that the behavior of CAFs plays a very important role in modulating the behavior of tumor cells, and also point to a specific molecular pathway that could be a useful drug target for inhibiting tumor progression," said Otey.

Since Otey discovered palladin more than a decade ago, researchers in her lab have examined the protein's role in both healthy and cancerous cells. Citing her own work, research from the Brentnall lab at University of Washington, and corroborating work such as a study from the Cukierman lab at Temple University's Fox Chase Cancer Center that found high levels of the palladin protein correlated strongly with low survival rates in renal carcinoma patients, Otey said that the evidence points toward a strong correlation between palladin expression in CAFs and the aggressiveness of tumor progression.

In future research, Otey plans to examine the levels of palladin in other types of cancer. As the Fox Chase study suggests, the mechanisms that she and her collaborators have discovered may play a role in cancers other than pancreatic.

"Knowing more about this may give us better tools to slow down metastasis," said Otey.

Study co-authors from UNC include first author Silvia M. Goicoechea, Rafael Garcνa-Mata, Judy Staub, Alejandra Valdivia, Lisa Sharek, Jen Jen Yeh and Hong Jin Kim. Other study co-authors are Chris McCulloch from University of Toronto, Canada; Rosa Hwang from University of Texas M.D. Anderson Cancer Center, Houston, TX; and Raul Urrutia from Mayo Clinic College of Medicine, Rochester, Minn.

This study was supported by grants from the NIH (GM081505), the NSF, the Elsa U. Pardee Foundation and the UNC University Cancer Research Fund.


Story Source:

The above story is based on materials provided by University of North Carolina School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. S M Goicoechea, R Garcνa-Mata, J Staub, A Valdivia, L Sharek, C G McCulloch, R F Hwang, R Urrutia, J J Yeh, H J Kim, C A Otey. Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts. Oncogene, 2013; DOI: 10.1038/onc.2013.68

Cite This Page:

University of North Carolina School of Medicine. "Probing how pancreatic cancers metastasize." ScienceDaily. ScienceDaily, 25 March 2013. <www.sciencedaily.com/releases/2013/03/130325101418.htm>.
University of North Carolina School of Medicine. (2013, March 25). Probing how pancreatic cancers metastasize. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/03/130325101418.htm
University of North Carolina School of Medicine. "Probing how pancreatic cancers metastasize." ScienceDaily. www.sciencedaily.com/releases/2013/03/130325101418.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) — The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) — Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) — America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) — A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins