Featured Research

from universities, journals, and other organizations

Discovery may allow scientists to make fuel from carbon dioxide in the atmosphere

Date:
March 26, 2013
Source:
University of Georgia
Summary:
Excess carbon dioxide in the Earth's atmosphere created by the widespread burning of fossil fuels is the major driving force of global climate change, and researchers the world over are looking for new ways to generate power that leaves a smaller carbon footprint. A new process is made possible by a unique microorganism called Pyrococcus furiosus, or "rushing fireball," which thrives by feeding on carbohydrates in the super-heated ocean waters near geothermal vents. By manipulating the organism's genetic material, scientists have created a kind of P. furiosus that is capable of feeding at much lower temperatures on carbon dioxide.

Michael Adams is a member of UGA's Bioenergy Systems Research Institute, Georgia Power professor of biotechnology and distinguished research professor of biochemistry and molecular biology in the Franklin College of Arts and Sciences.
Credit: Image courtesy of University of Georgia

Excess carbon dioxide in Earth's atmosphere created by the widespread burning of fossil fuels is the major driving force of global climate change, and researchers the world over are looking for new ways to generate power that leaves a smaller carbon footprint.

Now, researchers at the University of Georgia have found a way to transform the carbon dioxide trapped in the atmosphere into useful industrial products. Their discovery may soon lead to the creation of biofuels made directly from the carbon dioxide in the air that is responsible for trapping the sun's rays and raising global temperatures.

"Basically, what we have done is create a microorganism that does with carbon dioxide exactly what plants do-absorb it and generate something useful," said Michael Adams, member of UGA's Bioenergy Systems Research Institute, Georgia Power professor of biotechnology and Distinguished Research Professor of biochemistry and molecular biology in the Franklin College of Arts and Sciences.

During the process of photosynthesis, plants use sunlight to transform water and carbon dioxide into sugars that the plants use for energy, much like humans burn calories from food.

These sugars can be fermented into fuels like ethanol, but it has proven extraordinarily difficult to efficiently extract the sugars, which are locked away inside the plant's complex cell walls.

"What this discovery means is that we can remove plants as the middleman," said Adams, who is co-author of the study detailing their results published March 25 in the early online edition of the Proceedings of the National Academy of Sciences. "We can take carbon dioxide directly from the atmosphere and turn it into useful products like fuels and chemicals without having to go through the inefficient process of growing plants and extracting sugars from biomass."

The process is made possible by a unique microorganism called Pyrococcus furiosus, or "rushing fireball," which thrives by feeding on carbohydrates in the super-heated ocean waters near geothermal vents. By manipulating the organism's genetic material, Adams and his colleagues created a kind of P. furiosus that is capable of feeding at much lower temperatures on carbon dioxide.

The research team then used hydrogen gas to create a chemical reaction in the microorganism that incorporates carbon dioxide into 3-hydroxypropionic acid, a common industrial chemical used to make acrylics and many other products.

With other genetic manipulations of this new strain of P. furiosus, Adams and his colleagues could create a version that generates a host of other useful industrial products, including fuel, from carbon dioxide.

When the fuel created through the P. furiosus process is burned, it releases the same amount of carbon dioxide used to create it, effectively making it carbon neutral, and a much cleaner alternative to gasoline, coal and oil.

"This is an important first step that has great promise as an efficient and cost-effective method of producing fuels," Adams said. "In the future we will refine the process and begin testing it on larger scales."

The research was supported by the Department of Energy as part of the Electrofuels Program of the Advanced Research Projects Agency-Energy under Grant DE-AR0000081.


Story Source:

The above story is based on materials provided by University of Georgia. The original article was written by James Hataway. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthew W. Keller, Gerrit J. Schut, Gina L. Lipscomb, Angeli L. Menon, Ifeyinwa J. Iwuchukwu, Therese T. Leuko, Michael P. Thorgersen, William J. Nixon, Aaron S. Hawkins, Robert M. Kelly, and Michael W. W. Adams. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. PNAS, 2013 DOI: 10.1073/pnas.1222607110

Cite This Page:

University of Georgia. "Discovery may allow scientists to make fuel from carbon dioxide in the atmosphere." ScienceDaily. ScienceDaily, 26 March 2013. <www.sciencedaily.com/releases/2013/03/130326112301.htm>.
University of Georgia. (2013, March 26). Discovery may allow scientists to make fuel from carbon dioxide in the atmosphere. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2013/03/130326112301.htm
University of Georgia. "Discovery may allow scientists to make fuel from carbon dioxide in the atmosphere." ScienceDaily. www.sciencedaily.com/releases/2013/03/130326112301.htm (accessed July 22, 2014).

Share This




More Earth & Climate News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
Spectacular Lightning Storm Hits London

Spectacular Lightning Storm Hits London

AFP (July 19, 2014) A spectaCular lightning storm struck the UK overnight Friday. Images of lightning strikes over the Shard and Tower Bridge in central London. Duration: 00:23 Video provided by AFP
Powered by NewsLook.com
A Centuries' Old British Tradition Is Far from a Swan Song

A Centuries' Old British Tradition Is Far from a Swan Song

AFP (July 19, 2014) As if it weren't enough that the Queen is the Sovereign of the UK and 15 other Commonwealth realms, she is also the owner of all Britain's unmarked swans. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: High Winds Push Growing Washington Widlfire

Raw: High Winds Push Growing Washington Widlfire

AP (July 19, 2014) Pushed by howling, erratic winds, a massive wildfire in north-central Washington was growing rapidly and burning in new directions Saturday. (July 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins