Featured Research

from universities, journals, and other organizations

How cells distinguish friend from foe

Date:
April 1, 2013
Source:
University of California - Davis Health System
Summary:
Researchers ave shown how the innate immune system distinguishes between dangerous pathogens and friendly microbes. Like burglars entering a house, hostile bacteria give themselves away by breaking into cells. However, sensing proteins instantly detect the invasion, triggering an alarm that mobilizes the innate immune response. This new understanding of immunity could ultimately help researchers find new targets to treat inflammatory disorders.

Researchers at UC Davis have shown how the innate immune system distinguishes between dangerous pathogens and friendly microbes. Like burglars entering a house, hostile bacteria give themselves away by breaking into cells. However, sensing proteins instantly detect the invasion, triggering an alarm that mobilizes the innate immune response. This new understanding of immunity could ultimately help researchers find new targets to treat inflammatory disorders.

The paper was published in Nature on March 31.

The immune system has a number of difficult tasks, including differentiating between cells and microbes. However, the body, particularly the digestive tract, contains trillions of beneficial microbes, which must be distinguished from dangerous pathogens.

"We are colonized by microbes. In fact, there are more bacteria in the body than cells," said senior author Andreas Bäumler, professor and vice chair of research in the UC Davis Department of Medical Microbiogy and Immunology. "The immune system must not overreact to these beneficial microbes. On the other hand it must react viciously when a pathogen invades."

The key to distinguishing between pathogenic and beneficial bacteria are their differing goals. Ordinary digestive bacteria are content to colonize the gut, while their more virulent cousins must break into cells to survive. Salmonella achieves this by activating enzymes that rearrange the actin in a cell's cytoskeleton. Fortunately, cellular proteins sense the active enzymes, leading to a rapid immune response.

In the study, the researchers investigated a strain of Salmonella, in both cell lines and animal models, to determine how the innate immune system singles out the bacteria for attack. Salmonella uses a secretion system, a type of molecular syringe, to inject pathogenic proteins, such as SopE, into the cell. SopE activates human GTPase enzymes RAC1 and CDC42, which break down the surrounding actin, allowing the bacteriuminside.

But breaking and entering has consequences. Sensing the active GTPase enzymes, and recognizing their pathogenic nature, a protein called NOD1 sends the alarm, signaling other proteins, such as RIP2, that the cell is in danger. Ultimately, this signaling pathway reaches the protein NF-κB, a transcription factor that instructs the genome to mount an immune response, activating genes associated with inflammation, neutrophils and other immune functions.

Though it had been hypothesized that GTPase activation might trigger an immune response to attacking bacteria, prior to this study, no one had identified the pathway to NF-κB. These results were somewhat surprising, as NOD1had been thoroughly studied; leading many researchers to conclude it had no further mysteries to divulge. No one expected it to play such a significant role in alerting the innate immune system that cells were under attack.

These results could help researchers find new targets to combat inflammatory diseases. For example, NF-κB is known to be involved in a variety of conditions, such as inflammatory bowel disease, arthritis, sepsis and others. By understanding the pathways that activate inflammation, scientists and clinicians can develop ways to inhibit it.

"These pathways might be triggered erroneously because the host thinks there's an infection," said Bäumler. "Knowing the pathways and how they are activated is critical to controlling them."

Other authors include A. Marijke Keestra, Maria G.Winter, Josef J. Auburger, Simon P. Fräßle, Mariana N. Xavier, Sebastian E. Winter, Anita Kim, Victor Poon, Mariëtta M. Ravesloot, Julian F. T. Waldenmaier, Renée M. Tsolis and Richard A. Eigenheer.


Story Source:

The above story is based on materials provided by University of California - Davis Health System. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Marijke Keestra, Maria G. Winter, Josef J. Auburger, Simon P. Fräßle, Mariana N. Xavier, Sebastian E. Winter, Anita Kim, Victor Poon, Mariëtta M. Ravesloot, Julian F. T. Waldenmaier, Renée M. Tsolis, Richard A. Eigenheer, Andreas J. Bäumler. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature, 2013; DOI: 10.1038/nature12025

Cite This Page:

University of California - Davis Health System. "How cells distinguish friend from foe." ScienceDaily. ScienceDaily, 1 April 2013. <www.sciencedaily.com/releases/2013/04/130401101025.htm>.
University of California - Davis Health System. (2013, April 1). How cells distinguish friend from foe. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/04/130401101025.htm
University of California - Davis Health System. "How cells distinguish friend from foe." ScienceDaily. www.sciencedaily.com/releases/2013/04/130401101025.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) — President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) — Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) — Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) — President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins