Featured Research

from universities, journals, and other organizations

Gene switch steers blood supply to the retina

Date:
April 8, 2013
Source:
Universitaet Tübingen
Summary:
Normal functioning of the eye depends on a proper supply of blood to the retina. Light entering the eye passes through the cornea, the lens, and the vitreous body before reaching the retina, where it stimulates the nerves. If the retina contains too few or too many blood vessels – i.e., if it is under- or oversupplied with blood – a number of severe, often blinding eye diseases can develop.

Normal functioning of the eye depends on a proper supply of blood to the retina. Light entering the eye passes through the cornea, the lens, and the vitreous body before reaching the retina, where it stimulates the nerves. If the retina contains too few or too many blood vessels -- i.e., if it is under- or oversupplied with blood -- a number of severe, often blinding eye diseases can develop.

An international group of researchers led by Professor Alfred Nordheim at the University of Tübingen's Interfaculty Institute for Cell Biology has found, using experiments on mice, that genes for blood vessel growth in the retina are "switched on" by a known factor -- a protein called SRF. The scientists showed that by eliminating this factor, they could artificially induce a certain disease profile in newborn mice and a different one in adult mice. Their results, which are published now in The Journal of Clinical Investigation, offer important clues on the diseases afflicting human eyes and provide starting-points for the development of treatments for defective retinae and vitreous bodies.

Professor Alfred Nordheim's team has been examining the serum response factor (SRF) and its various functions for several years. SRF regulates the function of many genes in the genome of mice and men -- thereby setting in motion distinct growth processes for organs. Experimenting on mice in the laboratory, the Tübingen researchers have developed sophisticated mechanisms to influence the activity of SRF and its co-factors in distinct types of cells and at defined time points when the organism reaches a certain developmental stage.

In the current study, the researchers switched off SRF in the blood vessels of mouse embryos, as well as in newborn and adult mice. As a result, the blood vessels in the retinae of the newborns were not fully developed. Their eye problems were very similar to certain hereditary forms of a disease affecting the retina and vitreous body in the human eye (vitreoretinopathy and Norrie disease). Children affected by it often go blind at an early age. In mice of adult ages, however, switching off SRF had the opposite effect -- too many new blood vessels were formed in the retina, oversupplying it with blood. Doctors have made corresponding observations in elderly patients with a certain form of age-related macular degeneration (AMD), a disease which increasingly damages the retina and leads to vision loss. It is characterized by dilated blood vessels and the formation of excess blood vessels.

"I expected that SRF would play a role in the development of the vessel system, because it generally works to ensure the formation of cellular protrusions and new branched cellular structures in many organs, for instance in the nervous system and the vascular system," says Alfred Nordheim. But, he added, it was astonishing how closely the pathology of mice with switched-off SRF resembled that of human patients with particular eye diseases. "I think we have established a very good model with which we can investigate these diseases much more precisely," Nordheim says. It represents an important step for research into possible treatments, he adds.

The study was carried out in collaboration with researchers at the Max Planck Institute for Molecular Biomedicine in Münster (Prof. Adams), the Institute for Ophthalmic Research Tübingen (Prof. Seeliger), the Pathology Department at the Tübingen University Hospital (Prof. Wolburg) and the University of Texas, Dallas, USA (Prof. Olson).


Story Source:

The above story is based on materials provided by Universitaet Tübingen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Christine Weinl, Heidemarie Riehle, Dongjeong Park, Christine Stritt, Susanne Beck, Gesine Huber, Hartwig Wolburg, Eric N. Olson, Mathias W. Seeliger, Ralf H. Adams, Alfred Nordheim. Endothelial SRF/MRTF ablation causes vascular disease phenotypes in murine retinae. Journal of Clinical Investigation, 2013; DOI: 10.1172/JCI64201

Cite This Page:

Universitaet Tübingen. "Gene switch steers blood supply to the retina." ScienceDaily. ScienceDaily, 8 April 2013. <www.sciencedaily.com/releases/2013/04/130408133509.htm>.
Universitaet Tübingen. (2013, April 8). Gene switch steers blood supply to the retina. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2013/04/130408133509.htm
Universitaet Tübingen. "Gene switch steers blood supply to the retina." ScienceDaily. www.sciencedaily.com/releases/2013/04/130408133509.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) — Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) — A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) — More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) — Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins