Featured Research

from universities, journals, and other organizations

Metagenomics used to identify organisms in outbreaks of serious infectious disease

Date:
April 10, 2013
Source:
University of Warwick
Summary:
Researchers have been able to reconstruct the genome sequence of an outbreak strain of Shiga-toxigenic Escherichia coli (STEC), which caused over 50 deaths in Germany, using an approach known as metagenomics which bypasses the need for growing bacteria in the lab.

Researchers have been able to reconstruct the genome sequence of an outbreak strain of Shiga-toxigenic Escherichia coli (STEC), which caused over 50 deaths in Germany, using an approach known as metagenomics which bypasses the need for growing bacteria in the lab.

An international team coordinated by Mark Pallen, Professor of Microbial Genomics at Warwick Medical School, was able to reconstruct the genome sequence through the direct sequencing of DNA extracted from microbiologically complex samples. The study, published in a genomics-themed issue of JAMA on 10 April, highlights the potential of this approach to identify and characterise bacterial pathogens directly from clinical specimens.

Metagenomics has been used previously in a clinical diagnostic setting to identify the cause of outbreaks of viral infection, but this is its first reported use in an outbreak of bacterial infection.

Professor Pallen explained the significance of the STEC outbreak, “The outbreak of Shiga-toxigenic Escherichia coli illustrated the effects of a bacterial epidemic on a wealthy, modern, industrialized society, with more than 3,000 cases and more than 50 deaths reported in Germany between May and June of 2011.”

He added, “During an outbreak such as this, rapid and accurate pathogen identification and characterisation is essential for the management of individual cases and the outbreak as a whole. Traditionally, clinical bacteriology has relied primarily on laboratory isolation of bacteria in pure culture to identify and characterise an outbreak strain. Often, however laboratory culture proves slow, difficult, or even impossible and recognition of an outbreak strain can be difficult if it belongs to an unknown variety or species for which specific laboratory tests and diagnostic criteria don’t already exist.”

Professor Pallen led the team, which included two other recently appointed Warwick microbiologists, Chrystala Constantinidou and Jacqueline Chan, together with scientists from the University of Birmingham, the University of Glasgow, the University Medical Centre Hamburg-Eppendorf in Germany and the sequencing company Illumina, to develop and exploit novel sequencing and analytic approaches.

In this retrospective investigation, 45 samples were selected from faecal specimens obtained from patients in Germany with diarrhoea during the 2011 STEC outbreak. Samples were sequenced in summer 2012, followed by a 3-phase analysis in late 2012-early 2013.

In phase 1, a draft genome of the outbreak strain was constructed, using data obtained the HiSeq 2500 instrument in rapid-run mode. In an innovative new approach devised by Nick Loman (Birmingham) and Chris Quince (Glasgow), outbreak-specific sequences were identified by subtracting sequences from the outbreak metagenome that were present in faecal samples from healthy individuals.

In phase 2, the depth of coverage of the outbreak strain genome was determined in each sample. 10 samples gave greater than 10-fold coverage and 26 samples yielded greater than 1-fold coverage. Sequences from the Shiga-toxin genes were detected in two-thirds of the STEC-positive samples. In phase 3, sequences from each sample were compared with sequences from known bacteria to identify potential pathogens other than the outbreak strain, including Clostridium difficile, Campylobacter jejuni, Campylobacter concisus, and Salmonella enterica.

Professor Pallen summarises what this means for the identification of future outbreaks, “There are numerous drawbacks to the use of nineteenth-century approaches such as microscopy and culture when it comes to classification. Our results illustrate the potential of metagenomics as an open-ended, culture-independent approach for the identification and characterization of bacterial pathogens during an outbreak.

“There are challenges, of course, including speeding up and simplifying workflows, reducing costs and improving diagnostic sensitivity. However, given the dizzying pace of progress in high-throughput sequencing, these are not likely to remain problems for very long.”


Story Source:

The above story is based on materials provided by University of Warwick. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nicholas J. Loman et al. A Culture-Independent Sequence-Based Metagenomics Approach to the Investigation of an Outbreak of Shiga-Toxigenic Escherichia coli O104:H4Outbreak of Shiga-toxigenic Escherichia coli. JAMA, 2013; 309 (14): 1502 DOI: 10.1001/jama.2013.3231

Cite This Page:

University of Warwick. "Metagenomics used to identify organisms in outbreaks of serious infectious disease." ScienceDaily. ScienceDaily, 10 April 2013. <www.sciencedaily.com/releases/2013/04/130410094137.htm>.
University of Warwick. (2013, April 10). Metagenomics used to identify organisms in outbreaks of serious infectious disease. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/04/130410094137.htm
University of Warwick. "Metagenomics used to identify organisms in outbreaks of serious infectious disease." ScienceDaily. www.sciencedaily.com/releases/2013/04/130410094137.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins