Featured Research

from universities, journals, and other organizations

World's first microfluidic device for rapid separation and detection of non-spherical bioparticles

Date:
April 15, 2013
Source:
National University of Singapore
Summary:
A bioengineering research team has developed a novel microfluidic device for efficient, rapid separation and detection of non-spherical bioparticles.

A bioengineering research team from the National University of Singapore (NUS) team led by Associate Professor Zhang Yong has developed a novel microfluidic device for efficient, rapid separation and detection of non-spherical bioparticles. Microfluidic devices deal with the behavior, precise control and manipulation of fluids that are geometrically constrained to sub-millimeter scale. This new device, which separates and detects non-spherical bioparticles such as pathogenic bacteria and malaria infected red blood cells, can potentially be used for rapid medical diagnostics and treatment.

Bioparticles such as bacteria and red blood cells (RBC) are non-spherical. Many are also deformable -- for example, our blood cells may change shape when affected by different pathogens in our body. Hence, the team's shape-sensitive technique is a significant discovery. Currently, separation techniques are mostly designed for spherical particles.

Though the team is focusing mainly on the rapid separation and detection of bacteria from pathological samples at the moment, their device has potential as a rapid diagnostic tool as well. Their new technique can potentially replace an age-old method of detection based on bacterial culture.

Explained Assoc Prof Zhang, "The old method was developed about 100 years ago, but it is still being used today as the mainstream technique because no new technique is available for effective separation of bacteria from pathological samples like blood. Many of the pathogenic bacteria are non-spherical but most of microfluidic devices today are for separating spherical cells. Our method uses a special I-shape pillar array which is capable of separating non-spherical or irregularly-shaped bioparticles."

The method developed by the NUS team can complete the diagnosis process in less than an hour compared to 24-48 hours required for bacterial detection by using conventional methods. Their device is also efficient in separating red blood cells (RBCs) from blood samples as RBCs are non-spherical. This enables rapid detection of diagnostic biomarkers which reside in blood sample.

One of the most challenging aspects for the team was designing and fabricating a device that is capable of detecting even the smallest dimension of bioparticles and still provide reasonably good throughput (amount which can be processed through the system in a given time).

How it works and moving forward

Scientists have tried to address the problem of separating non-spherical bioparticles by using techniques such as restricting the flow of particles but these have not shown to be as effective. However, the NUS Bioengineering team's I-shape pillar array device has proven to be successful.

The I-shape pillar array induces rotational movements of the non-spherical particles which in turn increases the effective hydrodynamic size of the bioparticles flowing in the device, allowing for efficient separation. Their design is able to provide 100 percent separation of RBCs from blood samples, outperforming conventional cylindrical pillar array designs.

The device can also potentially separate bioparticles with diverse shapes and sizes. The team has tested their device successfully on rod-shaped bacteria such as Escherichia coli (common bacteria which can cause food poisoning). So far, this has been difficult to achieve using conventional microfluidic chips.

The team's findings were published in the reputed journal Nature Communications on 27 March 2013.

Said Assoc Prof Zhang, "With our current findings, we hope to move on to separate other non-spherical bioparticles like fungi, with higher throughput and efficiency, circumventing the spherical size dependency of current techniques."


Story Source:

The above story is based on materials provided by National University of Singapore. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kerwin Kwek Zeming, Shashi Ranjan, Yong Zhang. Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device. Nature Communications, 2013; 4: 1625 DOI: 10.1038/ncomms2653

Cite This Page:

National University of Singapore. "World's first microfluidic device for rapid separation and detection of non-spherical bioparticles." ScienceDaily. ScienceDaily, 15 April 2013. <www.sciencedaily.com/releases/2013/04/130415094458.htm>.
National University of Singapore. (2013, April 15). World's first microfluidic device for rapid separation and detection of non-spherical bioparticles. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2013/04/130415094458.htm
National University of Singapore. "World's first microfluidic device for rapid separation and detection of non-spherical bioparticles." ScienceDaily. www.sciencedaily.com/releases/2013/04/130415094458.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) — A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) — Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins