Featured Research

from universities, journals, and other organizations

Improved molecular tools streamline influenza testing and management

Date:
April 17, 2013
Source:
Elsevier
Summary:
Over 40,000 people die each year in the United States from influenza-related diseases. In patients whose immune systems are compromised, antiviral therapy may be life-saving, but it needs to be initiated quickly. It is therefore crucial to diagnose and type the influenza rapidly. Scientists in the Netherlands have designed and evaluated a set of molecular assays that they say are a sensitive and good alternative for conventional diagnostic methods and can produce results in one day without the need for additional equipment.

Over 40,000 people die each year in the United States from influenza-related diseases. In patients whose immune systems are compromised, antiviral therapy may be life-saving, but it needs to be initiated quickly. It is therefore crucial to diagnose and type the influenza rapidly. Scientists in the Netherlands have designed and evaluated a set of molecular assays that they say are a sensitive and good alternative for conventional diagnostic methods and can produce results in one day without the need for additional equipment.

The results are published in The Journal of Molecular Diagnostics.

Currently the main circulating influenza viruses that cause disease in humans are the influenza A H3N2 and H1N1 subtypes together with influenza B virus. Re-emergence of a variant of the H1N1 influenza virus, which circulated in the population between 1977 and 2009, can also not be ruled out. Strategies to combat influenza virus-induced disease rely on vaccination as a preventive measure. In cases where vaccine efficacy is low, antiviral drugs may be used as prophylaxis.

Traditionally the adamantane and neuraminidase inhibitor class of drugs are available for both treatment and prophylaxis. However some subtypes are resistant to these. Most of the recently circulating influenza viruses are resistant to the adamantanes. In addition, the pre-pandemic H1N1 viruses, which emerged at the end of 2007, are naturally resistant to the neuraminidase inhibitor oseltamivir (Tamiflu®). Sensitive and reproducible molecular assays are therefore essential for diagnosing influenza virus subtypes.

The investigators report on the design, validation, and evaluation of a set of real-time polymerase chain reaction (RT-PCR) assays for quantification and subtyping of human influenza A and B viruses from patient respiratory material, as well as four assays for detecting drug resistant mutations. For the evaluation of these assays, 245 respiratory specimens from 87 patients living in Asia, Europe, and the United States who were enrolled in a prospective study of influenza illness, including assessment of neuraminidase resistance, were analyzed. In addition 96 pre-pandemic influenza A/H1N1 viruses from the epidemic of 2007-2008 were analyzed by the H275Y assay to check the robustness of the assay.

The influenza quantification assay was used to check for virus positivity and to obtain virus particle counts for all analyzed samples. Influenza A viruses were then subtyped and tested for presence of oseltamivir resistance mutations using the resistance RT-PCR assays. In total, 129 respiratory specimens tested positive for influenza A and 60 for influenza B virus. One sample tested positive for both virus types.

"RT-PCR based assays have become the standard in most diagnostic laboratories worldwide in recent years," comments lead investigator Martin Schutten, PhD, Head of the Clinical Virology Unit at the Erasmus University, Rotterdam, the Netherlands. "The assays described here cover all currently circulating human influenza viruses and can detect major resistance mutations to oseltamivir. By introducing external quantification and internal standards, longitudinal assay performance can be monitored carefully and a virus particle count can be assigned to an analyzed sample.

"This algorithm can generate useful data to assist in the management of individual influenza virus infected patients and to evaluate clinical trials. Information regarding influenza virus (sub) type, viral load and antiviral susceptibility can be obtained within one working day. Alongside previously described assays that detect antiviral resistance associated mutations in 2009 pandemic H1N1 virus, these assays are a powerful tool for the clinical management of influenza virus infected patients," he concludes.

Although infection from H7N9, the new potential pandemic Influenza strain, or H5N1, a continuing pandemic threat since 1997, can be identified by exclusion (positive in the Influenza matrix RT-PCR but negative in RT-PCR typing), development of rapid typing RT-PCR for these potential pandemic viruses may be useful in complementing the existing set.


Story Source:

The above story is based on materials provided by Elsevier. Note: Materials may be edited for content and length.


Journal Reference:

  1. Erhard van der Vries, Jeer Anber, Anne van der Linden, Yingbin Wu, Jolanda Maaskant, Ralph Stadhouders, Ruud van Beek, Guus Rimmelzwaan, Albert Osterhaus, Charles Boucher, Martin Schutten. Molecular Assays for Quantitative and Qualitative Detection of Influenza Virus and Oseltamivir Resistance Mutations. The Journal of Molecular Diagnostics, 2013; DOI: 10.1016/j.jmoldx.2012.11.007

Cite This Page:

Elsevier. "Improved molecular tools streamline influenza testing and management." ScienceDaily. ScienceDaily, 17 April 2013. <www.sciencedaily.com/releases/2013/04/130417131719.htm>.
Elsevier. (2013, April 17). Improved molecular tools streamline influenza testing and management. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/04/130417131719.htm
Elsevier. "Improved molecular tools streamline influenza testing and management." ScienceDaily. www.sciencedaily.com/releases/2013/04/130417131719.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) — The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) — Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) — America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) — A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins