Featured Research

from universities, journals, and other organizations

New potential target for cancer therapy identified

Date:
April 19, 2013
Source:
UT Southwestern Medical Center
Summary:
Researchers have found that alternative splicing -- a process that allows a single gene to code for multiple proteins -- appears to be a new potential target for anti-telomerase cancer therapy.

A research team led by Dr. Woodring Wright has uncovered a new potential target for anti-telomerase cancer therapy.
Credit: UT Southwestern Medical Center

Researchers at UT Southwestern Medical Center have found that alternative splicing -- a process that allows a single gene to code for multiple proteins -- appears to be a new potential target for anti-telomerase cancer therapy.

The enzyme telomerase is overexpressed in almost all cancer cells, and previous research efforts have failed to identify good telomerase inhibitors. The study by Dr. Woodring Wright and UT Southwestern colleagues in the April 4 issue of Cell Reports identifies a new approach for inhibiting telomerase, which is an enzyme that drives uncontrolled division and replication of cancer cells.

Alternative splicing allows genetic information to be assembled in different ways and is almost always controlled by DNA sequences that are immediately adjacent to the parts of a gene that code for protein. "In the case of the telomerase gene, we found that these controlling regions are located very far from the protein coding regions and that they contain unusual DNA sequences," said Dr. Wright, professor of cell biology and internal medicine. "Their unusual DNA structure suggests that humans regulate telomerase in a very different fashion that we may be able to exploit to develop inhibitors of the enzyme."

Most of the splice variants that telomerase makes are inactive, but Dr. Wright's team demonstrated that it was possible to shift the splicing to make even less active telomerase, potentially providing a new approach for cancer therapy.

Telomeres are specialized structures at the ends of each chromosome. As DNA replicates, telomeres shorten each time a cell divides. Telomerase in human cancer cells is 10 to 20 times more active than in normal body cells. The increase provides a selective growth advantage to many types of tumors. If telomerase activity was to be turned off, then telomeres in cancer cells would shorten like they do in normal body cells.

"The oft-used analogy is that telomeres are like the plastic ends of shoelaces that protect them from fraying," Dr. Wright said. "Once the plastic becomes damaged and falls off, the shoelace can no longer be threaded effectively. The only solution at that point is to throw the shoelace away."

In most tissues, telomerase turns off during development, after which telomeres shorten and limit the number of times a cell can divide, eventually losing their capping function similar to the shoelace tip falling off. This timing also functions as a tumor-protection mechanism, since the limited cellular lifespan prevents pre-malignant cells from accumulating the mutations they need to become cancerous.

Preclinical studies have shown that inhibiting telomerase causes tumor cells to lose immortality, re-initiate telomere shortening, and eventually die. In the event that a tumor has already thoroughly developed, it may be surgically removed, and following conventional chemotherapy, telomerase inhibition could prevent rare surviving cells from having enough divisions to cause a relapse.

Dr. Wright said the alternative splicing method also could be useful for regenerative medicine, because telomeres in our stem cells shorten with age and that eventually compromises their function. "Under the right circumstances, increasing or decreasing telomerase activity could profoundly affect our treatments for both cancer and aging," he said.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. MandyS. Wong, Ling Chen, Christopher Foster, Radhika Kainthla, JerryW. Shay, WoodringE. Wright. Regulation of Telomerase Alternative Splicing: A Target for Chemotherapy. Cell Reports, 2013; DOI: 10.1016/j.celrep.2013.03.011

Cite This Page:

UT Southwestern Medical Center. "New potential target for cancer therapy identified." ScienceDaily. ScienceDaily, 19 April 2013. <www.sciencedaily.com/releases/2013/04/130419160713.htm>.
UT Southwestern Medical Center. (2013, April 19). New potential target for cancer therapy identified. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/04/130419160713.htm
UT Southwestern Medical Center. "New potential target for cancer therapy identified." ScienceDaily. www.sciencedaily.com/releases/2013/04/130419160713.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins