Featured Research

from universities, journals, and other organizations

Counter-intuitive behavior of microgel composed of soft polymer blobs

Date:
April 30, 2013
Source:
Springer Science+Business Media
Summary:
A new study explores the counter-intuitive behavior of a microgel composed of soft polymer blobs. Being a physicist offers many perks. For one, it allows an understanding of the substances ubiquitous in everyday industrial products such as emulsions, gels, granular pastes or foams. These are known for their intermediate behavior between fluid and solid. Paint, for example, can be picked up on a paintbrush without flowing and spread under the stress of the brush stroke like a fluid.

Being a physicist offers many perks. For one, it allows an understanding of the substances ubiquitous in everyday industrial products such as emulsions, gels, granular pastes or foams. These are known for their intermediate behaviour between fluid and solid. Paint, for example, can be picked up on a paintbrush without flowing and spread under the stress of the brush stroke like a fluid. Baudouin Geraud and colleagues from the Light Matter Institute at the University of Lyon, France, have studied the flow of a microgel confined in microchannels. They have shown, in a study just published in EPJ E, that its behaviour under confinement differs from predictions based on standard theories. Indeed, its molecules are not only subjected to local forces, but also to neighbouring forces that affect its flow.

Related Articles


The authors chose to study the influence of confinement on the flow of a polymer microgel named Carbopol. It is made of jammed acrylic acid polymer blobs, typically a few microns in size, dispersed in water. For the first time, they explored whether this network of polymers can have an impact on the flow of this microgel when confined under a large range of pressure differentials and fluid movement speeds. They relied on techniques including an approach constraining the complex fluid in sub-millimeter scale microchannels, known as microfluidic.

They also used a high-resolution particles' speed measurement method called Tracking Particle Velocimetry and studied the flow response to an external force. Geraud and colleagues confirmed, for the first time in a microgel, that the flow properties at a local point do not depend only on the local force but also on the dynamics of its vicinity. This has previously been shown in concentrated emulsions, granular materials and foams under confinement.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. Baudouin Geraud, Lyderic Bocquet, Catherine Barentin. Confined flows of a polymer microgel. The European Physical Journal E, 2013; 36 (3) DOI: 10.1140/epje/i2013-13030-3

Cite This Page:

Springer Science+Business Media. "Counter-intuitive behavior of microgel composed of soft polymer blobs." ScienceDaily. ScienceDaily, 30 April 2013. <www.sciencedaily.com/releases/2013/04/130430092320.htm>.
Springer Science+Business Media. (2013, April 30). Counter-intuitive behavior of microgel composed of soft polymer blobs. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2013/04/130430092320.htm
Springer Science+Business Media. "Counter-intuitive behavior of microgel composed of soft polymer blobs." ScienceDaily. www.sciencedaily.com/releases/2013/04/130430092320.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

HTC And Valve Team Up For Virtual Reality Headset

HTC And Valve Team Up For Virtual Reality Headset

Newsy (Mar. 1, 2015) HTC unveiled Vive, its new virtual reality headset, Sunday. The device is supported by gaming company Valve, which has made a push into the market. Video provided by Newsy
Powered by NewsLook.com
Rehab Robot Helps Restore Damaged Muscles and Nerves

Rehab Robot Helps Restore Damaged Muscles and Nerves

Reuters - Innovations Video Online (Mar. 1, 2015) A rehabilitation robot prototype to help restore deteriorated nerves and muscles using electromyography and computer games. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Elon Musk's Hyperloop Moves Forward

Elon Musk's Hyperloop Moves Forward

Buzz60 (Feb. 27, 2015) Zipping around at 800-miles an hour is coming closer to reality in California. An entire town is being built around Elon Musk&apos;s Hyperloop concept and it wants you to stop in for a ride when it&apos;s ready. Brett Larson is on board. Video provided by Buzz60
Powered by NewsLook.com
Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins