Featured Research

from universities, journals, and other organizations

Tiny worm sheds light on giant mystery about neuron

Date:
April 30, 2013
Source:
Genetics Society of America
Summary:
Scientists studying neurons in Caenorhabditis elegans have found a gene, unc-16, that serves as a gatekeeper, restricting the flow of specific membrane-enclosed organelles from the cell body to the axon. Organelles clogging the axon could potentially interfere with neuronal signaling or cause the axon to degenerate, leading to neurodegenerative disorders.

Unc-16 mutant cell body (green) with its axon initial segment (labeled “commissure”).
Credit: Dr. Kenneth Miller lab, Oklahoma Medical Research Foundation

Scientists have identified a gene that keeps our nerve fibers from clogging up. Researchers in Ken Miller's laboratory at the Oklahoma Medical Research Foundation (OMRF) found that the unc-16 gene of the roundworm Caenorhabditis elegans encodes a gatekeeper that restricts flow of cellular organelles from the cell body to the axon, a long, narrow extension that neurons use for signaling. Organelles clogging the axon could interfere with neuronal signaling or cause the axon to degenerate, leading to neurodegenerative disorders.

Related Articles


This research, published in the May 2013 Genetics Society of America's journal Genetics, adds an unexpected twist to our understanding of trafficking within neurons.

Proteins equivalent to UNC-16 are present in the neurons of all animals, including humans and are known to interact with proteins associated with neurodegenerative disorders in humans (Hereditary Spastic Paraplegia) and mice (Legs at Odd Angles). However, the underlying cause of these disorders is not well understood.

"Our UNC-16 study provides the first insights into a previously unrecognized trafficking system that protects axons from invasion by organelles from the cell soma," Dr. Miller said. "A breakdown in this gatekeeper may be the underlying cause of this group of disorders," he added.

The use of the model organism C. elegans, a tiny, translucent roundworm with only 300 neurons, enabled the discovery because the researchers were able to apply complex genetic techniques and imaging methods in living organisms, which would be impossible in larger animals. Dr. Miller's team tagged organelles with fluorescent proteins and then used time-lapse imaging to follow the movements of the organelles. In normal axons, organelles exited the cell body and entered the initial segment of the axon, but did not move beyond that. In axons of unc-16 mutants, the organelles hitched a ride on tiny motors that carried them deep into the axon, where they accumulated.

Dr. Miller acknowledges there are still a lot of unanswered questions. His lab is currently investigating how UNC-16 performs its crucial gatekeeper function by looking for other mutant worms with similar phenotypes. A Commentary on the article, also published in this issue of GENETICS, calls the work "provocative," and highlights several important questions prompted by this pioneering study.

"This research once again shows how studies of simple model organisms can bring insight into complex neurodegenerative diseases in humans," said Mark Johnston, Editor-in-Chief of the journal GENETICS. "This kind of basic research is necessary if we are to understand diseases that can't easily be studied in more complex animals."


Story Source:

The above story is based on materials provided by Genetics Society of America. Note: Materials may be edited for content and length.


Journal References:

  1. S. L. Edwards, S.-c. Yu, C. M. Hoover, B. C. Phillips, J. E. Richmond, K. G. Miller. An Organelle Gatekeeper Function for Caenorhabditis elegans UNC-16 (JIP3) at the Axon Initial Segment. Genetics, 2013; 194 (1): 143 DOI: 10.1534/genetics.112.147348
  2. Q. Zheng, M. L. Nonet. UNC-16/JIP3/Sunday Driver: A New Cop on the Organelle Highway. Genetics, 2013; 194 (1): 35 DOI: 10.1534/genetics.113.150490

Cite This Page:

Genetics Society of America. "Tiny worm sheds light on giant mystery about neuron." ScienceDaily. ScienceDaily, 30 April 2013. <www.sciencedaily.com/releases/2013/04/130430105950.htm>.
Genetics Society of America. (2013, April 30). Tiny worm sheds light on giant mystery about neuron. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/04/130430105950.htm
Genetics Society of America. "Tiny worm sheds light on giant mystery about neuron." ScienceDaily. www.sciencedaily.com/releases/2013/04/130430105950.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins