Featured Research

from universities, journals, and other organizations

Discovery of new hormone opens doors to new type 2 diabetes treatments

Date:
May 7, 2013
Source:
Harvard School of Public Health
Summary:
Researchers have discovered that a particular type of protein (hormone) found in fat cells helps regulate how glucose (blood sugar) is controlled and metabolized in the liver. Using experimental models and state-of-the-art technology, the scientists found that switching off this protein leads to better control of glucose production from the liver, revealing a potential new target that may be used to treat type 2 diabetes and other metabolic diseases.

Harvard School of Public Health (HSPH) researchers have discovered that a particular type of protein (hormone) found in fat cells helps regulate how glucose (blood sugar) is controlled and metabolized (used for energy) in the liver. Using experimental models and state-of-the-art technology, the scientists found that switching off this protein leads to better control of glucose production from the liver, revealing a potential new target that may be used to treat type 2 diabetes and other metabolic diseases.

Related Articles


The study appears online in the May 7, 2013 issue of Cell Metabolism.

"Although it has long been recognized that a key event leading to development of type 2 diabetes is uncontrolled glucose production from the liver, underlying mechanisms have been elusive," said senior author Gökhan S. Hotamisligil, chair of the Department of Genetics and Complex Diseases and J.S. Simmons Professor of Genetics and Metabolism at HSPH. "We now have identified aP2 as a novel hormone released from fat cells that controls this critical function."

The ability of one organ -- in this case, the adipose tissue -- to so directly and profoundly control the actions of another -- the liver -- is in itself very exciting, said Hotamisligil. "We suspect this communication system between adipose tissue and liver may have evolved to help fat cells command the liver to supply the body with glucose in times of nutrient deprivation. However, when the engorged fat cells lose control over this signal in obesity, the blood levels of aP2 rise, glucose is poured into the bloodstream and cannot be cleared by other tissues. The result is high blood glucose levels and type 2 diabetes."

Type 2 diabetes is a metabolic disease that impacts at least 26 million Americans and is linked to heart disease, stroke, and other serious health complications. The disease is often linked to obesity and insulin resistance and a loss of control of glucose production in the liver and insulin production in the pancreas, resulting in too much glucose in the blood.

The majority of cases of type 2 diabetes are related to failure of insulin action in the body. However, for decades researchers and physicians have been faced with a conundrum: not all who are obese or resistant to insulin develop type 2 diabetes. In fact, many patients who are severely obese never develop the disease. As a result scientists have theorized that an unknown factor is involved in regulating glucose metabolism in the liver, and perhaps the presence or absence of this element might determine who gets the disease.

"It was surprising to find that a critical hormone playing a pathological role in diabetes turned out to be the secreted form of aP2, which for decades has been considered a protein that resides inside the fat cells," said Hotamisligil. In the new study, HSPH researchers first increased the levels of aP2 in normal, healthy mice to match the high blood aP2 levels seen in obese mice and humans. This resulted in impaired glucose metabolism. Next, they reduced the blood aP2 levels in obese and diabetic mice to low levels seen in lean healthy mice. This intervention restored glucose metabolism to its normal status. Therefore, the investigators reached the conclusion that the amount and action of aP2 in blood was critical for diabetes, opening up new avenues for potentially being able control or prevent type 2 diabetes. The researchers also identified a potential therapeutic role for a novel aP2 antibody that neutralizes aP2 activity and corrects type 2 diabetes in mice.

"The consequences of this discovery are profound, and the potential therapeutic applications by switching this protein off have the capability to reshape the way physicians treat diabetes," said lead author Haiming Cao, postdoctoral fellow in the Department of Genetics and Complex Diseases at HSPH.


Story Source:

The above story is based on materials provided by Harvard School of Public Health. Note: Materials may be edited for content and length.


Journal Reference:

  1. Haiming Cao, Motohiro Sekiya, Meric Erikci Ertunc, M. Furkan Burak, Jared R. Mayers, Ariel White, Karen Inouye, Lisa M. Rickey, Baris C. Ercal, Masato Furuhashi, Gürol Tuncman, Gökhan S. Hotamisligil. Adipocyte Lipid Chaperone aP2 Is a Secreted Adipokine Regulating Hepatic Glucose Production. Cell Metabolism, 2013 DOI: 10.1016/j.cmet.2013.04.012

Cite This Page:

Harvard School of Public Health. "Discovery of new hormone opens doors to new type 2 diabetes treatments." ScienceDaily. ScienceDaily, 7 May 2013. <www.sciencedaily.com/releases/2013/05/130507134555.htm>.
Harvard School of Public Health. (2013, May 7). Discovery of new hormone opens doors to new type 2 diabetes treatments. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/05/130507134555.htm
Harvard School of Public Health. "Discovery of new hormone opens doors to new type 2 diabetes treatments." ScienceDaily. www.sciencedaily.com/releases/2013/05/130507134555.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins