Featured Research

from universities, journals, and other organizations

New magnetic graphene may revolutionize electronics

Date:
May 10, 2013
Source:
Plataforma SINC
Summary:
Researchers have managed to give graphene magnetic properties. The breakthrough opens the door to the development of graphene-based spintronic devices, that is, devices based on the spin or rotation of the electron, and could transform the electronics industry.

Computerised simulation of TCNQ molecules on graphene layer, where they acquire a magnetic order.
Credit: IMDEA-Nanoscience

Researchers from IMDEA-Nanociencia Institute and from Autonoma and Complutense Universities of Madrid (Spain) have managed to give graphene magnetic properties. The breakthrough, published in the journal 'Nature Physics', opens the door to the development of graphene-based spintronic devices, that is, devices based on the spin or rotation of the electron, and could transform the electronics industry.

Scientists were already aware that graphene, an incredible material formed of a mesh of hexagonal carbon atoms, has extraordinary conductivity, mechanical and optical properties. Now it is possible to give it yet one more property: magnetism, implying a breakthrough in electronics.

This is revealed in the study that the Madrid Institute for Advanced Studies in Nanoscience (IMDEA-Nanociencia) and Autonoma Autonomous (UAM) and Complutense (UCM) universities of Madrid have just published in the journal Nature Physics. Researchers have managed to create a hybrid surface from this material that behaves as a magnet.

"In spite of the huge efforts to date of scientists all over the world, it has not been possible to add the magnetic properties required to develop graphene-based spintronics. However these results pave the way to this possibility," highlights Prof. Rodolfo Miranda, Director of IMDEA-Nanociencia.

Spintronics is based on the charge of the electron, as in traditional electronics, but also on its spin, which determines its magnetic moment. A material is magnetic when most of its electrons have the same spin.

As the spin can have two values, its use adds two more states to traditional electronics. Thus, both data processing speed and quantity of data to be stored on electronic devices can be increased, with applications in fields such as telecommunications, computing, energy and biomedicine.

In order to develop a graphene-based spintronic device, the challenge was to 'magnetise' the material, and researchers from Madrid have found the way through the quantum and nanoscience world.

The technique involves growing an ultra perfect grapheme film over a ruthenium single crystal inside an ultra high vacuum chamber whereorganic molecules of tetracyano-p-quinodimethane (TCNQ) are evaporated on the grapheme surface. TCNQ is a molecule that acts as a semiconductor at very low temperatures in certain compounds.

On observing results through an scanning tunnelling microscope (STM), scientists were surprised: organic molecules had organised themselves and were regularly distributed all over the surface, interacting electronically with the graphene-ruthenium substrate.

"We have proved in experiments how the structure of the TCNQ molecules over graphene acquireslong-range magnetic order, with electrons positioned in different bands according to their spin," clarifies Prof. Amadeo L. Vázquez de Parga.

Meanwhile, his colleague Prof. Fernando Martin has conducted modelling studies that have shown that, although graphene does not interact directly with the TCNQ, it does permit a highly efficient charge transfer between the substrate and the TCNQ molecules and allows the molecules to develop long range magnetic order.

The result is a new graphene-based magnetised layer, which paves the way towards the creation of devices based on what was already considered as the material of the future, but which now may also have magnetic properties.


Story Source:

The above story is based on materials provided by Plataforma SINC. Note: Materials may be edited for content and length.


Journal Reference:

  1. Manuela Garnica, Daniele Stradi, Sara Barja, Fabian Calleja, Cristina Díaz, Manuel Alcamí, Nazario Martín, Amadeo L. Vázquez de Parga, Fernando Martín, Rodolfo Miranda. Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nature Physics, 2013; DOI: 10.1038/nphys2610

Cite This Page:

Plataforma SINC. "New magnetic graphene may revolutionize electronics." ScienceDaily. ScienceDaily, 10 May 2013. <www.sciencedaily.com/releases/2013/05/130510075506.htm>.
Plataforma SINC. (2013, May 10). New magnetic graphene may revolutionize electronics. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2013/05/130510075506.htm
Plataforma SINC. "New magnetic graphene may revolutionize electronics." ScienceDaily. www.sciencedaily.com/releases/2013/05/130510075506.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins