Featured Research

from universities, journals, and other organizations

New technique may open up an era of atomic-scale semiconductor devices

Date:
May 22, 2013
Source:
North Carolina State University
Summary:
Researchers have developed a new technique for creating high-quality semiconductor thin films at the atomic scale -- meaning the films are only one atom thick. The technique can be used to create these thin films on a large scale, sufficient to coat wafers that are two inches wide, or larger.

Molybdenum sulfide.
Credit: Linyou Cao

Researchers at North Carolina State University have developed a new technique for creating high-quality semiconductor thin films at the atomic scale -- meaning the films are only one atom thick. The technique can be used to create these thin films on a large scale, sufficient to coat wafers that are two inches wide, or larger.

"This could be used to scale current semiconductor technologies down to the atomic scale -- lasers, light-emitting diodes (LEDs), computer chips, anything," says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and senior author of a paper on the work. "People have been talking about this concept for a long time, but it wasn't possible. With this discovery, I think it's possible."

The researchers worked with molybdenum sulfide (MoS2), an inexpensive semiconductor material with electronic and optical properties similar to materials already used in the semiconductor industry. However, MoS2 is different from other semiconductor materials because it can be "grown" in layers only one atom thick without compromising its properties.

In the new technique, researchers place sulfur and molybdenum chloride powders in a furnace and gradually raise the temperature to 850 degrees Celsius, which vaporizes the powder. The two substances react at high temperatures to form MoS2. While still under high temperatures, the vapor is then deposited in a thin layer onto the substrate.

"The key to our success is the development of a new growth mechanism, a self-limiting growth," Cao says. The researchers can precisely control the thickness of the MoS2 layer by controlling the partial pressure and vapor pressure in the furnace. Partial pressure is the tendency of atoms or molecules suspended in the air to condense into a solid and settle onto the substrate. Vapor pressure is the tendency of solid atoms or molecules on the substrate to vaporize and rise into the air.

To create a single layer of MoS2 on the substrate, the partial pressure must be higher than the vapor pressure. The higher the partial pressure, the more layers of MoS2 will settle to the bottom. If the partial pressure is higher than the vapor pressure of a single layer of atoms on the substrate, but not higher than the vapor pressure of two layers, the balance between the partial pressure and the vapor pressure can ensure that thin-film growth automatically stops once the monolayer is formed. Cao calls this "self-limiting" growth.

Partial pressure is controlled by adjusting the amount of molybdenum chloride in the furnace -- the more molybdenum is in the furnace, the higher the partial pressure.

"Using this technique, we can create wafer-scale MoS2 monolayer thin films, one atom thick, every time," Cao says. "We can also produce layers that are two, three or four atoms thick."

Cao's team is now trying to find ways to create similar thin films in which each atomic layer is made of a different material. Cao is also working to create field-effect transistors and LEDs using the technique. Cao has filed a patent on the new technique.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yifei Yu, Chun Li, Yi Liu, Liqin Su, Yong Zhang, Linyou Cao. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films. Scientific Reports, 2013; 3 DOI: 10.1038/srep01866

Cite This Page:

North Carolina State University. "New technique may open up an era of atomic-scale semiconductor devices." ScienceDaily. ScienceDaily, 22 May 2013. <www.sciencedaily.com/releases/2013/05/130522112032.htm>.
North Carolina State University. (2013, May 22). New technique may open up an era of atomic-scale semiconductor devices. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/05/130522112032.htm
North Carolina State University. "New technique may open up an era of atomic-scale semiconductor devices." ScienceDaily. www.sciencedaily.com/releases/2013/05/130522112032.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins