Featured Research

from universities, journals, and other organizations

Self-assembled nanostructures for hostile environments

Date:
May 28, 2013
Source:
Tokyo Institute of Technology
Summary:
Scientists in Japan have developed a new self-assembled nanostructure that can survive very hot or saline environments.

The team used linear and cyclic block copolymers to create flower-shaped micelles. The cyclic-based micelles withstood considerably higher temperatures and salinity levels, and could have numerous applications in industry and green chemistry.
Credit: Image courtesy of Tokyo Institute of Technology

Nanostructures that assemble themselves from polymer molecules could prove to be useful tools in chemistry and industry. However, it is difficult to develop structurally robust self-assembling materials because they are often adversely affected by their surroundings.

Many natural organisms have evolved to protect themselves in hostile environments. For example, types of archaea -- single-cell microorganisms living in hot springs -- have cyclic molecules in their cell membranes that form shields to preserve the cell under extreme heat.

Inspired by nature's use of cyclic structures, Takuya Yamamoto and co-workers at the Department of Organic and Polymeric Materials, Tokyo Institute of Technology, have dramatically enhanced both the thermal and salt stability of self-assembling polymeric structures, simply by changing the shape of the founding polymers from linear to cyclic.

The team designed new block copolymers -- structures comprising several polymers connected by covalent bonding -- which self-assembled into shapes called micelles. Micelles have a hydrophilic (water-attracting) outer membrane, and a hydrophobic (water-repelling) core.

"We designed a cyclic amphiphilic block copolymer by mimicking fat molecules in the cell membrane of archaea," explains Yamamoto. "Both linear and cyclic copolymers were then used to create identical self-assembling flower-shaped micelles." The team discovered that although the chemical composition, concentration and dimensions of micelles built from the two differently shaped block copolymers remained the same, the cyclic-based micelles were able to withstand higher temperatures.

"The micelle from cyclic block copolymers withstood temperatures up to 40C higher than the linear-based micelles," explains Yamamoto. The researchers found that the tail ends of the linear copolymers were more likely to break loose from the flower-shaped structure during heating, allowing for bridging between micelles to occur. This meant that the micelles join together in an agglomerate blob at a relatively low temperature. The micelles created by the cyclical copolymers, on the other hand, had no 'loose ends' to form bridges, meaning the structures remained stable up to far higher temperatures.

The same structural differences allow for a greater tolerance of salt concentrations in the cyclic-based micelles. The loose tails in linear-based micelles allowed rapid dehydration to occur in highly saline environments, whereas the closed cyclic structures are structurally stronger, making them more resilient to salt.

"The combination of higher salting-out concentrations and thermal resistance means these micelles have numerous potential applications," explains Yamamoto. "Possibilities include drug delivery systems, where heating is not possible and salt provides an alternative method for controlling how a micelle responds in order to release a drug."

The team also hope that their micelles could provide the basis for many new materials in the field of green chemistry, because their structural robustness is based purely on their shape rather than on complex chemical reactions.


Story Source:

The above story is based on materials provided by Tokyo Institute of Technology. Note: Materials may be edited for content and length.


Journal References:

  1. Satoshi Honda, Takuya Yamamoto, Yasuyuki Tezuka. Topology-Directed Control on Thermal Stability: Micelles Formed from Linear and Cyclized Amphiphilic Block Copolymers. Journal of the American Chemical Society, 2010; 132 (30): 10251 DOI: 10.1021/ja104691j
  2. Satoshi Honda, Takuya Yamamoto, Yasuyuki Tezuka. Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles. Nature Communications, 2013; 4: 1574 DOI: 10.1038/ncomms2585

Cite This Page:

Tokyo Institute of Technology. "Self-assembled nanostructures for hostile environments." ScienceDaily. ScienceDaily, 28 May 2013. <www.sciencedaily.com/releases/2013/05/130528091446.htm>.
Tokyo Institute of Technology. (2013, May 28). Self-assembled nanostructures for hostile environments. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/05/130528091446.htm
Tokyo Institute of Technology. "Self-assembled nanostructures for hostile environments." ScienceDaily. www.sciencedaily.com/releases/2013/05/130528091446.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins