Featured Research

from universities, journals, and other organizations

Biomarker could help scientists choose the right cell line when conducting stem cell experiments

Date:
June 4, 2013
Source:
Boston Children's Hospital
Summary:
Stem cells that strongly express a gene called WNT3 are biased to develop into cells and tissues including pancreas, liver and bladder. This discovery suggests that other genes may serve as biomarkers for selecting stem cells with a preference for turning into different tissue types. Such markers would make it easier for stem cell scientists to choose the right cell line to start with when generating specific tissues for study.

According to researchers at Boston Children's Hospital, stem cells that strongly express a gene called WNT3 are biased to develop into cells and tissues including pancreas, liver and bladder. This discovery suggests that other genes may serve as biomarkers for selecting stem cells with a preference for turning into different tissue types. Such markers would make it easier for stem cell scientists to choose the right cell line to start with when generating specific tissues for study.

Related Articles


The researchers, led by Wei Jiang, PhD, and Yi Zhang, PhD, of the Program in Cellular and Molecular Medicine at Boston Children's, published their findings June 6 in the inaugural issue of the journal Stem Cell Reports.

All human embryonic (hESC) and induced pluripotent (iPSC) cell lines can develop or differentiate into any kind of cell or tissue in the body. However, differentiation potential -- the ability to develop into particular cell types -- is not equal across all hESC and iPSC lines. Rather, each line is biased to develop into one of the three major tissue lineages: endoderm (e.g., digestive tract, liver, pancreas), mesoderm (e.g., cartilage, circulatory system, kidneys) and ectoderm (e.g., cornea, nervous system, teeth).

That bias can significantly impact stem cell studies.

"If you want to differentiate stem cells into pancreas cells, for instance, you want to start with a line with a high differentiation potential for endoderm," says Zhang. "It's like athletes and sports. Some athletes are built for football, some for baseball, some for swimming. Every cell line has its own strengths, and the challenge is knowing what those strengths are."

Currently, investigators must resort to testing several lines with the same differentiation process -- which can cost a great deal of time and effort -- and then using the one that turns out to be the most efficient at producing cells of the type they need.

What they would like to be able to do, Zhang says, "is select the most appropriate cell line without having to carry out full differentiation experiments first."

The discovery of WNT3's role as an endoderm differentiation marker grew out of work by Jiang on pancreatic cell development. "Wei was testing different lines to find ones that we could use to generate pancreatic beta cells," Zhang explains. "He noted the correlation between WNT3 expression and endoderm differentiation efficiency in the lines he was testing and suggested that it might work well as a biomarker."

From there, the pair went on to show -- in collaboration with researchers at Duke University -- that they could use WNT3 expression levels in hESCs to predict the potential of hESC lines for differentiating into endoderm.

In addition, Jiang and Zhang found they could change particular hESC lines' differentiation potential by manipulating WNT3 expression. Increasing or reducing WNT3 activity made hESC lines more or less likely, respectively, to develop into endoderm.

How WNT3 affects endoderm differentiation potential is not yet clear, and is something Zhang wants to understand. But he believes that other genes may possibly serve as markers for selecting lines primed for mesoderm and ectoderm development.

"We would like to find other markers and develop a scoring system," he continues. "There are many hESC and iPSC lines, and we need a simple way to tell which to use in order to produce particular cell types."


Story Source:

The above story is based on materials provided by Boston Children's Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wei Jiang, Donghui Zhang, Nenad Bursac, Yi Zhang. WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of hESCs. Stem Cell Reports, 2013 1(1) pp. 46 - 52 DOI: 10.1016/j.stemcr.2013.03.003

Cite This Page:

Boston Children's Hospital. "Biomarker could help scientists choose the right cell line when conducting stem cell experiments." ScienceDaily. ScienceDaily, 4 June 2013. <www.sciencedaily.com/releases/2013/06/130604135407.htm>.
Boston Children's Hospital. (2013, June 4). Biomarker could help scientists choose the right cell line when conducting stem cell experiments. ScienceDaily. Retrieved March 1, 2015 from www.sciencedaily.com/releases/2013/06/130604135407.htm
Boston Children's Hospital. "Biomarker could help scientists choose the right cell line when conducting stem cell experiments." ScienceDaily. www.sciencedaily.com/releases/2013/06/130604135407.htm (accessed March 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rehab Robot Helps Restore Damaged Muscles and Nerves

Rehab Robot Helps Restore Damaged Muscles and Nerves

Reuters - Innovations Video Online (Mar. 1, 2015) — A rehabilitation robot prototype to help restore deteriorated nerves and muscles using electromyography and computer games. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Reuters - Innovations Video Online (Feb. 27, 2015) — A dongle that plugs into a Smartphone mimics a lab-based blood test for HIV and syphilis and can detect the diseases in 15 minutes, say researchers. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Doctor Says Head Transplants Possible Within Two Years

Doctor Says Head Transplants Possible Within Two Years

Buzz60 (Feb. 27, 2015) — An Italian doctor is saying he could stick someone&apos;s head onto someone else&apos;s body. Patrick Jones (@Patrick_E_Jones) reports. Video provided by Buzz60
Powered by NewsLook.com
How Your Dentist Could Help Screen You For Diabetes

How Your Dentist Could Help Screen You For Diabetes

Newsy (Feb. 27, 2015) — A new study from researchers at New York University suggests dentists could soon use blood samples taken from patients&apos; mouths to test for diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins