Featured Research

from universities, journals, and other organizations

Targeting an aspect of Down syndrome

Date:
June 5, 2013
Source:
University of Michigan
Summary:
Researchers have determined how a gene that is known to be defective in Down syndrome is regulated and how its dysregulation may lead to neurological defects, providing insights into potential therapeutic approaches to an aspect of the syndrome.

The protrusion of a neuron without Dscam protein (green) and that of a neuron with an abnormally high level of Dscam protein (red). The protrusions are overlaid on the fruitfly's equivalent of the human spinal cord (blue).
Credit: Xin Wang

University of Michigan researchers have determined how a gene that is known to be defective in Down syndrome is regulated and how its dysregulation may lead to neurological defects, providing insights into potential therapeutic approaches to an aspect of the syndrome.

Normally, nerve cells called neurons undergo an intense period of extending and branching of neuronal protrusions around the time of birth. During this period, the neurons produce the proteins of the gene called Down syndrome cell-adhesion molecule, or Dscam, at high levels. After this phase, the growth and the levels of protein taper off.

However, in the brains of patients with Down syndrome, epilepsy and several other neurological disorders, the amount of Dscam remains high. The impact of the elevated Dscam amount on how neurons develop is unknown.

Bing Ye, a faculty member at U-M's Life Sciences Institute, found that in the fruit fly Drosophila, the amount of Dscam proteins in a neuron determines the size to which a neuron extends its protrusions before it forms connections with other nerve cells. An overproduction of Dscam proteins leads to abnormally large neuronal protrusions.

Ye also identified two molecular pathways that converge to regulate the abundance of Dscam. One, dual leucine zipper kinase (DLK), which is involved in nerve regeneration, promotes the synthesis of Dscam proteins. Another, fragile X mental retardation protein (FMRP), which causes fragile X syndrome when defective, represses Dscam protein synthesis. Because humans share these genes with Drosophila, the DLK-FMRP-Dscam relationship presents a possible target for therapeutic intervention, Ye said.

Many genes are involved in neurological disorders like Down syndrome, and how molecular defects cause the disease is complex.

"But because of the important roles of Dscam in the development of neurons, its related defect is very likely to be an aspect of Down syndrome and it may be an aspect of the syndrome that can be treated," said Ye, an assistant professor in the Department of Cell and Developmental Biology at the U-M Medical School.

Ye's next step is to test the effects of overexpression of Dscam in mice to see how it changes the development of the nervous system and the behavior of the animal.

Down syndrome occurs in about one in 830 newborns; an estimated 250,000 people in the U.S. have the condition, according to the National Library of Medicine's Genetics Home Reference.

Ye's study is scheduled to be published online June 5 in Neuron. Other authors were Jung Hwan Kim, Xin Wang and Rosemary Coolon of the Life Sciences Institute and the Department of Cell and Developmental Biology. The research was supported by the National Institutes of Health, Whitehall Foundation and Pew Scholars Program in the Biological Sciences.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jung Hwan Kim, Xin Wang, Rosemary Coolon, Bing Ye. Dscam Expression Levels Determine Presynaptic Arbor Sizes in Drosophila Sensory Neurons. Neuron, 2013 DOI: 10.1016/j.neuron.2013.05.020

Cite This Page:

University of Michigan. "Targeting an aspect of Down syndrome." ScienceDaily. ScienceDaily, 5 June 2013. <www.sciencedaily.com/releases/2013/06/130605132902.htm>.
University of Michigan. (2013, June 5). Targeting an aspect of Down syndrome. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2013/06/130605132902.htm
University of Michigan. "Targeting an aspect of Down syndrome." ScienceDaily. www.sciencedaily.com/releases/2013/06/130605132902.htm (accessed September 22, 2014).

Share This



More Health & Medicine News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins