Featured Research

from universities, journals, and other organizations

First observation of spin Hall effect in a quantum gas is step toward 'atomtronics'

Date:
June 5, 2013
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have reported the first observation of the spin Hall effect in a Bose-Einstein condensate.

This artist’s conception shows atoms in a Bose-Einstein Condensate (BEC) being pushed by laser light. When the atoms, which all have the same magnetic spin orientation (represented by their blue and yellow "poles"), are pushed toward the viewer, they drift to the right because of their spin -- a result of the spin Hall effect, which has been observed in a BEC for the first time.
Credit: Edwards/JQI

Researchers at the National Institute of Standards and Technology (NIST) have reported* the first observation of the "spin Hall effect" in a Bose-Einstein condensate (BEC), a cloud of ultracold atoms acting as a single quantum object. As one consequence, they made the atoms, which spin like a child's top, skew to one side or the other, by an amount dependent on the spin direction. Besides offering new insight into the quantum mechanical world, they say the phenomenon is a step toward applications in "atomtronics" -- the use of ultracold atoms as circuit components.

Related Articles


The spin Hall effect is seen in electrons and other quantum particles when their motion depends on their magnetic orientation, or "spin." Previously, the spin Hall effect has been observed in electrons confined to a two-dimensional semiconductor strip, and in photons, but never before in a BEC.

A quantum circuit might use spins, described as "up" or "down," as signals, in a way analogous to how electric charge can represent ones and zeros in conventional computers. Quantum devices, however, can process information in ways that are difficult or impossible for conventional devices. Finding ways to manipulate spin is a major research effort among quantum scientists, and the team's results may help the spin Hall effect become a good tool for the job.

The team used several sets of lasers to trap rubidium atoms in a tiny cloud, about 10 micrometers on a side, inside a vacuum chamber and then cool the atoms to a few billionths of a degree above absolute zero. Under these conditions, the atoms change from an ordinary gas to an exotic state of matter called a BEC, in which the atoms all behave identically. Then, the NIST team employed another laser to gently push the BEC, allowing them to observe the spin Hall effect at work.

Spin is roughly analogous to the rotation of a top, and if the top is gently pushed straight forward, it will eventually tend to curve either to the right or left, depending on which way it is spinning. Similarly, subject to the spin Hall effect, a quantum object spinning one way will, when pushed, curve off to one side, while if it spins the other way, it will curve to the other. The BEC followed this sort of curved path after the laser pushed it.

"This effect has been observed in solids before, but in solids there are other things happening that make it difficult to distinguish what the spin Hall effect is doing," says the research team's Matthew Beeler, who just completed a postdoctoral fellowship at NIST. "The good thing about seeing it in the BEC is that we've got a simple system whose properties we can explain in just two lines of equations. It means we can disentangle the spin Hall effect from the background and explore it more easily."

Conceptually, the laser setup can be thought of as an atom spin transistor -- an atomtronic device -- that can manipulate spin "currents" just as a conventional electronic transistor manipulates electrical current.

Beeler says that it is unlikely to be a practical way to build a logic gate for a working quantum computer, though. For now, he says, their new window into the spin Hall effect is good for researchers, who have wanted an easier way to understand complex systems where the effect appears. It also might provide insight into how data can be represented and moved from place to place in atomtronic circuits.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. M. C. Beeler, R. A. Williams, K. Jimιnez-Garcνa, L. J. LeBlanc, A. R. Perry, I. B. Spielman. The spin Hall effect in a quantum gas. Nature, 2013; DOI: 10.1038/nature12185

Cite This Page:

National Institute of Standards and Technology (NIST). "First observation of spin Hall effect in a quantum gas is step toward 'atomtronics'." ScienceDaily. ScienceDaily, 5 June 2013. <www.sciencedaily.com/releases/2013/06/130605133604.htm>.
National Institute of Standards and Technology (NIST). (2013, June 5). First observation of spin Hall effect in a quantum gas is step toward 'atomtronics'. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/06/130605133604.htm
National Institute of Standards and Technology (NIST). "First observation of spin Hall effect in a quantum gas is step toward 'atomtronics'." ScienceDaily. www.sciencedaily.com/releases/2013/06/130605133604.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins