Featured Research

from universities, journals, and other organizations

Catching individual molecules in a million with optical antennas inside nano-boxes

Date:
June 10, 2013
Source:
ICFO-The Institute of Photonic Sciences
Summary:
Detecting one individual biomolecule amongst millions of other neighboring molecules has been technically impossible until now. Scientists have now devised the smallest optical device capable of detecting and sensing individual biomolecules at concentrations that are similar to those found in the cellular context.

This is a dimer antenna inside a nanobox for single biomolecule analysis at high concentrations.
Credit: ICFO

A single cell in our body is composed of thousands of millions of different biomolecules that work together in an extremely well-coordinated way. Likewise, many biological and biochemical reactions occur only if molecules are present at very high concentrations. Understanding how all these molecules interact with each other is key to advancing our knowledge in molecular and cell biology.

This knowledge is of central and fundamental importance in the quest for the detection of the earliest stages of many human diseases. As such, one of ultimate goals in Life Sciences and Biotechnology is to observe how individual molecules work and interact with each other in these very crowded environments. Unfortunately, detecting one molecule amongst millions of neighbouring molecules has been technically impossible until now. The key to successfully detecting the single molecule lies in the conception and production of a working device that shrinks the observation region to a tiny size that is comparable to the size of the molecule itself, i.e. only a few nanometres.

Researchers at the Fresnel Institute in Marseille and ICFO-the Institute for Photonic Sciences in Barcelona report in Nature Nanotechnology the design and fabrication of the smallest optical device, capable of detecting and sensing individual biomolecules at concentrations that are similar to those found in the cellular context. The device called "antenna-in-a-box" consists on a tiny dimer antenna made out of two gold semi-spheres, separated from each other by a gap as small as 15nm. Light sent to this antenna is enormously amplified in the gap region where the actual detection of the biomolecule of interest occurs. Because amplification of the light is confined to the dimensions of the gap, only molecules present in this tiny region are detected. A second trick that the researchers used to make this device work was to embed the dimer antennas inside boxes also of nanometric dimensions. "The box screens out the unwanted "noise" of millions of other surrounding molecules, reducing the background and improving as a whole the detection of individual biomolecules.," explains Jerome Wenger from Fresnel Institute. When tested under different sample concentrations, this novel antenna-in-box device allowed for 1100-fold fluorescence brightness enhancement together with detection volumes down to 58 zeptoliters (1 zL = 10-21L), i.e., the smallest observation volume in the world.

The antenna-in-a-box offers a highly efficient platform for performing a multitude of nanoscale biochemical assessments with single molecule sensitivity at physiological conditions. It could be used for ultrasensitive sensing of minute amounts of molecules, becoming an excellent early diagnosis device for biosensing of many disease markers. "It can also be used as an ultra-bright optical nanosource to illuminate molecular processes in living cells and ultimately visualize how individual biomolecules interact with each other. This brings us closer to the long awaited dream of biologists," concludes ICFO researcher Prof. Maria Garcia-Parajo.


Story Source:

The above story is based on materials provided by ICFO-The Institute of Photonic Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Deep Punj, Mathieu Mivelle, Satish Babu Moparthi, Thomas S. van Zanten, Hervé Rigneault, Niek F. van Hulst, María F. García-Parajó, Jérôme Wenger. A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations. Nature Nanotechnology, 2013; DOI: 10.1038/nnano.2013.98

Cite This Page:

ICFO-The Institute of Photonic Sciences. "Catching individual molecules in a million with optical antennas inside nano-boxes." ScienceDaily. ScienceDaily, 10 June 2013. <www.sciencedaily.com/releases/2013/06/130610095144.htm>.
ICFO-The Institute of Photonic Sciences. (2013, June 10). Catching individual molecules in a million with optical antennas inside nano-boxes. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2013/06/130610095144.htm
ICFO-The Institute of Photonic Sciences. "Catching individual molecules in a million with optical antennas inside nano-boxes." ScienceDaily. www.sciencedaily.com/releases/2013/06/130610095144.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins