Featured Research

from universities, journals, and other organizations

Potential new target to thwart antibiotic resistance: Viruses in gut confer antibiotic resistance to bacteria

Date:
June 10, 2013
Source:
Wyss Institute for Biologically Inspired Engineering at Harvard
Summary:
Bacteria in the gut that are under attack by antibiotics have allies no one had anticipated, scientists have found. Gut viruses that usually commandeer the bacteria, it turns out, enable them to survive the antibiotic onslaught, most likely by handing them genes that help them withstand the drug.

Gut viruses called bacteriophage, or phage (red), harbor resistance genes that shield bacteria from antibiotics. The findings mean that drugs that target phages could offer a potential new path to mitigate antibiotic resistance.
Credit: Jenn Hinkle

Bacteria in the gut that are under attack by antibiotics have allies no one had anticipated, a team of Wyss Institute scientists has found. Gut viruses that usually commandeer the bacteria, it turns out, enable them to survive the antibiotic onslaught, most likely by handing them genes that help them withstand the drug.

What's more, the gut viruses, called bacteriophage or simply phage, deliver genes that help the bacteria to survive not just the antibiotic they've been exposed to, but other types of antibiotics as well, the scientists reported online June 9 in Nature. That suggests that phages in the gut may be partly responsible for the emergence of dangerous superbugs that withstand multiple antibiotics, and that drug targeting of phages could offer a potential new path to mitigate development of antibiotic resistance.

"The results mean that the antibiotic-resistance situation is even more troubling than we thought," said senior author Jim Collins, Ph.D., a pioneer of synthetic biology and Core Faculty member at the Wyss Institute for Biologically Inspired Engineering, who is also the William F. Warren Distinguished Professor at Boston University, where he leads the Center of Synthetic Biology.

Today disease-causing bacteria have adapted to antibiotics faster than scientists can generate new drugs to kill them, creating a serious global public-health threat. Patients who are hospitalized with serious bacterial infections tend to have longer, more expensive hospital stays, and they are twice as likely to die as those infected with antibiotic-susceptible bacteria, according to the World Health Organization. In addition, because first-line drugs fail more often than before, more expensive therapies must be used, raising health-care costs.

In the past, Collins and other scientists have probed the ways gut bacteria adapt to antibiotics, but they've focused on the bacteria themselves. But Collins and Sheetal Modi, Ph.D., the lead author of the study and a postdoctoral fellow in Collins' laboratory and at the Wyss Institute, knew that phage were also abundant in the gut, and that they were adept at ferrying genes from one bacterium to another.

The researchers wondered whether treating mice with antibiotics led phage in the gut to pick up more drug-resistance genes, and if so, whether that made gut bacteria stronger.

They gave mice either ciprofloxacin or ampicillin -- two commonly prescribed antibiotics. After eight weeks, they harvested all the viruses in the mice's feces, and identified the viral genes present by comparing them with a large database of known genes.

They found that the phages from antibiotic-treated mice carried significantly higher numbers of bacterial drug-resistance genes than they would have carried by chance. What's more, phage from ampicillin-treated mice carried more genes that help bacteria fight off ampicillin and related penicillin-like drugs, while phage from ciprofloxacin-treated mice carried more genes that help them fight off ciprofloxacin and related drugs.

"When we treat mice with certain classes of drugs, we see enrichment of resistance genes to those drug classes," Modi said.

The phage did more than harbor drug-resistance genes. They could also transfer them back to gut bacteria -- a necessary step in conferring drug resistance. The researchers demonstrated this by isolating phage from either antibiotic-treated mice or untreated mice, then adding those phage to gut bacteria from untreated mice. Phage from ampicillin-treated mice tripled the amount of ampicillin resistance, while phage from ciprofloxacin-treated mice doubled the amount of ciprofloxacin resistance.

That was bad enough, but the scientists also found signs that the phage could do yet more to foster antibiotic resistance. That's because gut phage from mice treated with one drug carried high levels of genes that confer resistance to different drugs, which means that the phage could serve as backup when bacteria must find ways to withstand a variety of antibiotics.

"With antibiotic treatment, the microbiome has a means to protect itself by expanding the antibiotic resistance reservoir, enabling bugs to come back to be potentially stronger and more resistant than before," Collins said.

"Antibiotic resistance is as pressing a global health problem as they come, and to fight it, it's critical to understand it," said Don Ingber, M.D., Ph.D., Wyss Institute Founding Director. "Jim's novel findings offer a previously unknown way to approach this problem -- by targeting the phage that live in our intestine, rather than the pathogens themselves."

This work was funded by the National Institutes of Health Director's Pioneer Award Program, the Howard Hughes Medical Institute, and the Wyss Institute for Biologically Inspired Engineering. In addition to Collins and Modi, the research team included: Henry H. Lee, Ph.D., a former graduate student at Boston University who's currently at Harvard Medical School, and Catherine S. Spina, an M.D./Ph.D. candidate at Boston University and researcher at the Wyss Institute.


Story Source:

The above story is based on materials provided by Wyss Institute for Biologically Inspired Engineering at Harvard. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sheetal R. Modi, Henry H. Lee, Catherine S. Spina, James J. Collins. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature, 2013; DOI: 10.1038/nature12212

Cite This Page:

Wyss Institute for Biologically Inspired Engineering at Harvard. "Potential new target to thwart antibiotic resistance: Viruses in gut confer antibiotic resistance to bacteria." ScienceDaily. ScienceDaily, 10 June 2013. <www.sciencedaily.com/releases/2013/06/130610133539.htm>.
Wyss Institute for Biologically Inspired Engineering at Harvard. (2013, June 10). Potential new target to thwart antibiotic resistance: Viruses in gut confer antibiotic resistance to bacteria. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2013/06/130610133539.htm
Wyss Institute for Biologically Inspired Engineering at Harvard. "Potential new target to thwart antibiotic resistance: Viruses in gut confer antibiotic resistance to bacteria." ScienceDaily. www.sciencedaily.com/releases/2013/06/130610133539.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins