Featured Research

from universities, journals, and other organizations

Key protein is linked to circadian clocks, helps regulate metabolism

Date:
June 19, 2013
Source:
Gladstone Institutes
Summary:
Inside each of us is our own internal timing device. It drives everything from sleep cycles to metabolism, but the inner-workings of this so-called "circadian clock" are complex, its molecular processes having long eluded scientists. But now, researchers have discovered how one protein regulates fundamental circadian processes -- and how disrupting its normal function can throw this critical system out of sync.

Inside each of us is our own internal timing device. It drives everything from sleep cycles to metabolism, but the inner-workings of this so-called "circadian clock" are complex, and the molecular processes behind it have long eluded scientists. But now, researchers at the Gladstone Institutes have discovered how one important protein falls under direct instructions from the body's circadian clock. Furthermore, they uncover how this protein regulates fundamental circadian processes -- and how disrupting its normal function can throw this critical system out of sync.

In the latest issue of the Journal of Neuroscience, Gladstone Investigator Katerina Akassoglou, PhD, and her team reveal in animal models how the production of the p75 neurotrophin receptor (p75NTR) protein oscillates in time with the body's natural circadian clock -- and how these rhythmic oscillations help regulate vital metabolic functions. This discovery underscores the widespread importance of p75NTR by offering insight into how the circadian clock helps maintain the body's overall metabolic health.

Virtually every organism on the planet -- from bacteria to humans -- has a circadian clock, a biological timing mechanism that oscillates with a period of about 24 hours and is coordinated with the cycle of day and night. And while it runs independent of external cues, it is influenced by the rhythms of light, temperature and food availability. Intriguingly, recent studies have also found a link between circadian clocks and metabolism.

"Important metabolic functions are also heavily influenced by circadian clocks, which is why activities such as chronic night-shift work -- which can cause a misalignment of this clock -- increase one's risk for metabolic and autoimmune diseases such as obesity, Type 2 diabetes, cancer and multiple sclerosis," said Dr. Akassoglou. Dr. Akassoglou is also a professor of neurology at the University of California, San Francisco, (UCSF) with which Gladstone is affiliated. "In this study, we pinpointed p75NTR as an important molecular 'link' between circadian clocks and metabolic health."

Originally, p75NTR was only thought to be active in the nervous system. Later studies found it to be active in many cell types throughout the body, suggesting that it impacts a variety of biological functions. Last year, Gladstone researchers discovered that p75NTR was present in the liver and in fat cells, and that it regulates glucose levels in the blood -- an important metabolic process. Since these findings uncovered a link between p75NTR and metabolism, the research team tested -- first in a petri dish and then in animal models -- whether there was also a link between p75NTR and the circadian clock.

The team focused on two genes called Clock and Bmal1. These so-called "circadian regulator genes," and others like them, are found throughout the body. Their activity controls the body's circadian clock. The researchers wanted to see if there was a connection between these circadian genes and p75NTR.

"Our initial experiments revealed such a connection," recalls Gladstone Postdoctoral Fellow Bernat Baeza-Raja, PhD, the paper's lead author. "In individual cells, we saw that p75NTR production was controlled by Clock and Bmal1, which bind directly to the gene that codes for the p75NTR and start production of the protein."

But perhaps even more important than how p75NTR was produced was when. The team found that p75NTR production, like the circadian clock genes themselves, oscillated in a 24-hour cycle -- in sync with the cells' natural circadian rhythm. Experiments in mouse models further supported these findings.

And when the team genetically modified a group of mice so that it lacked the circadian Clock gene, everything else fell out of sync. The circadian oscillation of p75NTR production was disrupted, and p75NTR levels dropped.

However, what was most fascinating, say the researchers, was how a drop in p75NTR levels then affected a variety of circadian clock systems. Specifically, the regular oscillations of other circadian genes in the brain and the liver became disrupted, as well as genes known to regulate glucose and lipid metabolism.

"The finding that a loss of p75NTR affected circadian and metabolic systems is strong evidence that this protein is intricately tied to both," said Life Sciences Institute Director Alan Saltiel, PhD, who is also a professor at the University of Michigan and was not involved in the study. "It will be fascinating to see what additional insight Dr. Akassoglou and her team will uncover as they continue to examine the role of p75NTR in circadian clocks and metabolic function."

"While these findings reveal p75NTR to be an important link between circadian clocks and metabolism, the system is complex, and there are likely other factors at play," said Dr. Akassoglou. "We are currently working to identify the relationship between the circadian clock, metabolism and the immune system, so that one day we could develop therapies to treat diseases influenced by circadian clock disruption -- including not only obesity and diabetes, but also potentially multiple sclerosis and even Alzheimer's disease."


Story Source:

The above story is based on materials provided by Gladstone Institutes. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Baeza-Raja, K. Eckel-Mahan, L. Zhang, E. Vagena, I. F. Tsigelny, P. Sassone-Corsi, L. J. Ptacek, K. Akassoglou. p75 Neurotrophin Receptor Is a Clock Gene That Regulates Oscillatory Components of Circadian and Metabolic Networks. Journal of Neuroscience, 2013; 33 (25): 10221 DOI: 10.1523/JNEUROSCI.2757-12.2013

Cite This Page:

Gladstone Institutes. "Key protein is linked to circadian clocks, helps regulate metabolism." ScienceDaily. ScienceDaily, 19 June 2013. <www.sciencedaily.com/releases/2013/06/130619101608.htm>.
Gladstone Institutes. (2013, June 19). Key protein is linked to circadian clocks, helps regulate metabolism. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2013/06/130619101608.htm
Gladstone Institutes. "Key protein is linked to circadian clocks, helps regulate metabolism." ScienceDaily. www.sciencedaily.com/releases/2013/06/130619101608.htm (accessed July 26, 2014).

Share This




More Health & Medicine News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
Too Few Teens Receiving HPV Vaccination, CDC Says

Too Few Teens Receiving HPV Vaccination, CDC Says

Newsy (July 24, 2014) The Centers for Disease Control and Prevention is blaming doctors for the low number of children being vaccinated for HPV. Video provided by Newsy
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins