Featured Research

from universities, journals, and other organizations

The discerning fruit fly: Linking brain-cell activity and behavior in smell recognition

Date:
June 19, 2013
Source:
Cold Spring Harbor Laboratory
Summary:
Comparing apples to oranges, or different apples. Neuroscientists have visualized and quantified the activity of cells in the fruit fly brain that process smell. They found that the activity of as few as 25 cells correlated extremely well with the flies' ability to tell different smells apart, as well group similar smells together, and they could predict fly behavior patterns towards the odors based on these responses.

The images above depict the activity of the mushroom body Kenyon cells in the fruit fly brain in response to 3 different odors (vertical axis) in 2 separate tests (horizontal axis) for each odor. The color bars to the right indicate intensity of the activity in the cells in response to the odors. The activity response pattern each odor triggers can be seen to be very different, while the pattern between tests of the same odor is very similar.
Credit: Image courtesy of Cold Spring Harbor Laboratory

Behind the common expression "you can't compare apples to oranges" lies a fundamental question of neuroscience: How does the brain recognize that apples and oranges are different? A group of neuroscientists at Cold Spring Harbor Laboratory (CSHL) has published new research that provides some answers.

In the fruit fly, the ability to distinguish smells lies in a region of the brain called the mushroom body (MB). Prior research has demonstrated that the MB is associated with learning and memory, especially in relation to the sense of smell, also known as olfaction.

CSHL Associate Professor Glenn Turner and colleagues have now mapped the activity of brain cells in the MB, in flies conditioned to have Pavlovian behavioral responses to different odors. Their results, outlined in a paper published today by the Journal of Neuroscience, suggest that the activity of a remarkably small number of neurons -- as few as 25 -- is required to be able to distinguish between different odors.

They also found that a similarly small number of nerve cells are involved in grouping alike odors. This means, for instance, that "if you've learned that oranges are good, the smell of a tangerine will also get you thinking about food," says Robert Campbell, a postdoctoral researcher in the Turner lab and lead author on the new study.

These intriguing new findings are part of a broad effort in contemporary neuroscience to determine how the brain, easily the most complex organ in any animal, manages to make a mass of raw sensory data intelligible to the individual -- whether a person or a fly -- in order to serve as a basis for making vital decisions.

Looking closely at Kenyon cells

The neurons in the fly MB are known as Kenyon cells, named after their discoverer, the neuroscientist Frederick Kenyon, who was the first person to stain and visualize individual neurons in the insect brain. Kenyon cells receive sensory inputs from organs that perceive smell, taste, sight and sound. This confluence of sensory input in the MB is important for memory formation, which comes about through a linking of different types of information.

Kenyon cells make up only about 4% of the entire fly brain and are extremely sensitive to inputs triggered by odors, in which only two connections between neurons, called synapses, separate them from the receptor cells at the "front end" of the olfactory system.

But in contrast to other regions of the brain, such as the vertebrate hippocampus, the sensory responses in the MB are few in number and relatively weak. It is the sparseness of the signals in the Kenyon cell neurons that makes studying memory formation in flies so promising to Turner and his team. "We set out to learn if these signals were really informative to the animal's learning and memory with regard to smell," Turner says.

In particular, Turner's group wanted to see if they could link these signals with actual behavior in flies. The team used an imaging technique that allowed them to view the responses of over 100 Kenyon cells at a time and, importantly, quantify their results. They found that even the very sparse responses in these cells that are triggered by odors provide a large amount of information about odor identity. Turner suspects the very selectiveness of the response helps in the accurate formation and recall of memories.

When the researchers used two odors blended together in a series of increasingly similar concentrations, they found that two very similar smells could be distinguished as a result of the activity of as few as 25 Kenyon cells. This correlated well with the behavior of the flies: when brain activity suggested the flies had difficulty discerning the odors, their behavior also showed they could not choose between them.

The activity of these cells also accounts for flies' ability to discern novel odors and group them together. This was determined in a "generalization" test, in which the degree to which flies learned a generalized aversion to unfamiliar test odors could be predicted based upon the relatively similar activity patterns of Kenyon cells that the odors induced.

"Being able to do this type of 'mind-reading' means we really understand what signals these activity patterns are sending," says Turner. Ultimately, he and colleagues hope to be able to relate their findings in the fly brain with the operation of the brain in mammals.

"Imaging a population code for odor identity in the Drosophila mushroom body" is published online in Journal of Neuroscience on June 19, 2013.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. A. A. Campbell, K. S. Honegger, H. Qin, W. Li, E. Demir, G. C. Turner. Imaging a Population Code for Odor Identity in the Drosophila Mushroom Body. Journal of Neuroscience, 2013; 33 (25): 10568 DOI: 10.1523/%u200BJNEUROSCI.0682-12.2013

Cite This Page:

Cold Spring Harbor Laboratory. "The discerning fruit fly: Linking brain-cell activity and behavior in smell recognition." ScienceDaily. ScienceDaily, 19 June 2013. <www.sciencedaily.com/releases/2013/06/130619101640.htm>.
Cold Spring Harbor Laboratory. (2013, June 19). The discerning fruit fly: Linking brain-cell activity and behavior in smell recognition. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2013/06/130619101640.htm
Cold Spring Harbor Laboratory. "The discerning fruit fly: Linking brain-cell activity and behavior in smell recognition." ScienceDaily. www.sciencedaily.com/releases/2013/06/130619101640.htm (accessed August 20, 2014).

Share This




More Plants & Animals News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Disquieting Times for Malaysia's 'fish Listeners'

Disquieting Times for Malaysia's 'fish Listeners'

AFP (Aug. 19, 2014) Malaysia's last "fish listeners" -- practitioners of a dying local art of listening underwater to locate their quarry -- try to keep the ancient technique alive in the face of industrial trawling and the depletion of stocks. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com
USDA Cracks Down On Imports From Foreign Puppy Mills

USDA Cracks Down On Imports From Foreign Puppy Mills

Newsy (Aug. 18, 2014) New USDA measures to regulate dog imports aim to crack down on buying dogs from overseas puppy mills. Video provided by Newsy
Powered by NewsLook.com
Bone Marrow Drug Regrows Hair In Some Alopecia Patients

Bone Marrow Drug Regrows Hair In Some Alopecia Patients

Newsy (Aug. 18, 2014) Researchers performed an experiment using an FDA-approved drug known as ruxolitinib. They found it to be successful in the majority of patients. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins