Featured Research

from universities, journals, and other organizations

Simple and inexpensive process to make a material for CO2 adsorption

Date:
June 19, 2013
Source:
Ulsan National Institute of Science and Technology (UNIST)
Summary:
Researchers have developed a novel, simple method to synthesize hierarchically nanoporous frameworks of nanocrystalline metal oxides such as magnesia and ceria by the thermal conversion of well-designed metal-organic frameworks (MOFs).

Researchers have developed a novel, simple method to synthesize hierarchically nanoporous frameworks of nanocrystalline metal oxides such as magnesia and ceria by the thermal conversion of well-designed metal-organic frameworks (MOFs).
Credit: Copyright UNIST

Researchers from Ulsan National Institute of Science and Technology (UNIST), S. Korea, developed a novel, simple method to synthesize hierarchically nanoporous frameworks of nanocrystalline metal oxides such as magnesia and ceria by the thermal conversion of well-designed metal-organic frameworks (MOFs).

The novel material developed by the UNIST research team has exceptionally high CO2 adsorption capacity which could pave the way to save Earth from CO2 pollution.

Nanoporous materials consist of organic or inorganic frameworks with a regular, porous structure. Because of their uniform pore sizes they have the property of letting only certain substances pass through, while blocking others. Nanoporous metal oxide materials are ubiquitous in materials science because of their numerous potential applications in various areas, including adsorption, catalysis, energy conversion and storage, optoelectronics, and drug delivery. While synthetic strategies for the preparation of siliceous nanoporous materials are well-established, non-siliceous metal oxide-based nanoporous materials still present challenges.

A description of the new research was published (Web) on May 7 in the Journal of the American Chemical Society.

Leading the research team is married couple Hoi Ri Moon and Sang Hoon Joo, both assistant professors at UNIST, who contributed to synthesizing nanoporous metal oxides and characterizing nanoporous materials respectively. Fellow authors include Tae Kyung Kim, Kyung Joo Lee, Jae Yeong Cheon and Jae Hwa Lee from UNIST.

The UNIST research team used MOFs based on aliphatic carboxylate ligands which are thermally less stable and much more labile than aromatic ligands. Specifically, the aliphatic ligand is adipic acid, which is a precursor for the production of nylon, and thus very important from an industrial perspective and low in price. During the thermolysis of a crystalline, aliphatic carboxylate ligand-based MOF (aph-MOF), the ligands were transformed into organic moieties via chemical decomposition, and were confined as vesicles in the solids.

The organic vesicles acted as self-generated porogens, which later were converted into nanopores; they also prevented aggregation of the metal oxide nanocrystals. Finally, upon thermolysis at higher temperature, the confined organic moieties evaporated, generating highly porous nanostructures comprising nanocrystalline metal oxides. The control of the retention time and the evaporation rate of the organic moieties in the host solid were critical for the successful formation of nanoporous metal oxides with nanocrystalline frameworks. The thermal treatments converted the Mg-aph-MOF into 3-dimensionally nanoporous MgO frameworks instead of discrete MgO nanoparticles embedded in a carbon matrix. Significantly, nanoporous MgO exhibited exceptional CO2 adsorption capacity (9.2 wt %) under conditions mimicking flue gas.

"I believe MOF-driven strategy can be expanded to other nanoporous monometallic and multimetallic oxides with a multitude of potential applications, especially for energy-related materials" said Prof. Moon. "Because of its high CO2 adsorption capacity, it will open a new way for environmental solutions."

"Various metal oxides converted from well-designed MOFs are being studied as fuel cell catalysts, also" said Prof. Joo, explaining his future research plan.

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.


Story Source:

The above story is based on materials provided by Ulsan National Institute of Science and Technology (UNIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Tae Kyung Kim, Kyung Joo Lee, Jae Yeong Cheon, Jae Hwa Lee, Sang Hoon Joo, Hoi Ri Moon. Nanoporous Metal Oxides with Tunable and Nanocrystalline Frameworks via Conversion of Metal–Organic Frameworks. Journal of the American Chemical Society, 2013; 135 (24): 8940 DOI: 10.1021/ja401869h

Cite This Page:

Ulsan National Institute of Science and Technology (UNIST). "Simple and inexpensive process to make a material for CO2 adsorption." ScienceDaily. ScienceDaily, 19 June 2013. <www.sciencedaily.com/releases/2013/06/130619161552.htm>.
Ulsan National Institute of Science and Technology (UNIST). (2013, June 19). Simple and inexpensive process to make a material for CO2 adsorption. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2013/06/130619161552.htm
Ulsan National Institute of Science and Technology (UNIST). "Simple and inexpensive process to make a material for CO2 adsorption." ScienceDaily. www.sciencedaily.com/releases/2013/06/130619161552.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins