Featured Research

from universities, journals, and other organizations

Simple and inexpensive process to make a material for CO2 adsorption

Date:
June 19, 2013
Source:
Ulsan National Institute of Science and Technology (UNIST)
Summary:
Researchers have developed a novel, simple method to synthesize hierarchically nanoporous frameworks of nanocrystalline metal oxides such as magnesia and ceria by the thermal conversion of well-designed metal-organic frameworks (MOFs).

Researchers have developed a novel, simple method to synthesize hierarchically nanoporous frameworks of nanocrystalline metal oxides such as magnesia and ceria by the thermal conversion of well-designed metal-organic frameworks (MOFs).
Credit: Copyright UNIST

Researchers from Ulsan National Institute of Science and Technology (UNIST), S. Korea, developed a novel, simple method to synthesize hierarchically nanoporous frameworks of nanocrystalline metal oxides such as magnesia and ceria by the thermal conversion of well-designed metal-organic frameworks (MOFs).

The novel material developed by the UNIST research team has exceptionally high CO2 adsorption capacity which could pave the way to save Earth from CO2 pollution.

Nanoporous materials consist of organic or inorganic frameworks with a regular, porous structure. Because of their uniform pore sizes they have the property of letting only certain substances pass through, while blocking others. Nanoporous metal oxide materials are ubiquitous in materials science because of their numerous potential applications in various areas, including adsorption, catalysis, energy conversion and storage, optoelectronics, and drug delivery. While synthetic strategies for the preparation of siliceous nanoporous materials are well-established, non-siliceous metal oxide-based nanoporous materials still present challenges.

A description of the new research was published (Web) on May 7 in the Journal of the American Chemical Society.

Leading the research team is married couple Hoi Ri Moon and Sang Hoon Joo, both assistant professors at UNIST, who contributed to synthesizing nanoporous metal oxides and characterizing nanoporous materials respectively. Fellow authors include Tae Kyung Kim, Kyung Joo Lee, Jae Yeong Cheon and Jae Hwa Lee from UNIST.

The UNIST research team used MOFs based on aliphatic carboxylate ligands which are thermally less stable and much more labile than aromatic ligands. Specifically, the aliphatic ligand is adipic acid, which is a precursor for the production of nylon, and thus very important from an industrial perspective and low in price. During the thermolysis of a crystalline, aliphatic carboxylate ligand-based MOF (aph-MOF), the ligands were transformed into organic moieties via chemical decomposition, and were confined as vesicles in the solids.

The organic vesicles acted as self-generated porogens, which later were converted into nanopores; they also prevented aggregation of the metal oxide nanocrystals. Finally, upon thermolysis at higher temperature, the confined organic moieties evaporated, generating highly porous nanostructures comprising nanocrystalline metal oxides. The control of the retention time and the evaporation rate of the organic moieties in the host solid were critical for the successful formation of nanoporous metal oxides with nanocrystalline frameworks. The thermal treatments converted the Mg-aph-MOF into 3-dimensionally nanoporous MgO frameworks instead of discrete MgO nanoparticles embedded in a carbon matrix. Significantly, nanoporous MgO exhibited exceptional CO2 adsorption capacity (9.2 wt %) under conditions mimicking flue gas.

"I believe MOF-driven strategy can be expanded to other nanoporous monometallic and multimetallic oxides with a multitude of potential applications, especially for energy-related materials" said Prof. Moon. "Because of its high CO2 adsorption capacity, it will open a new way for environmental solutions."

"Various metal oxides converted from well-designed MOFs are being studied as fuel cell catalysts, also" said Prof. Joo, explaining his future research plan.

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.


Story Source:

The above story is based on materials provided by Ulsan National Institute of Science and Technology (UNIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Tae Kyung Kim, Kyung Joo Lee, Jae Yeong Cheon, Jae Hwa Lee, Sang Hoon Joo, Hoi Ri Moon. Nanoporous Metal Oxides with Tunable and Nanocrystalline Frameworks via Conversion of Metal–Organic Frameworks. Journal of the American Chemical Society, 2013; 135 (24): 8940 DOI: 10.1021/ja401869h

Cite This Page:

Ulsan National Institute of Science and Technology (UNIST). "Simple and inexpensive process to make a material for CO2 adsorption." ScienceDaily. ScienceDaily, 19 June 2013. <www.sciencedaily.com/releases/2013/06/130619161552.htm>.
Ulsan National Institute of Science and Technology (UNIST). (2013, June 19). Simple and inexpensive process to make a material for CO2 adsorption. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/06/130619161552.htm
Ulsan National Institute of Science and Technology (UNIST). "Simple and inexpensive process to make a material for CO2 adsorption." ScienceDaily. www.sciencedaily.com/releases/2013/06/130619161552.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins