Featured Research

from universities, journals, and other organizations

Sequentially expressed genes in neural progenitors create neural diversity

Date:
June 19, 2013
Source:
New York University
Summary:
Biologists have found that a series of genes sequentially expressed in brain stem cells control the generation of neural diversity in visual system of fruit flies.

A team of New York University biologists has found that a series of genes sequentially expressed in brain stem cells control the generation of neural diversity in visual system of fruit flies. Their results are reported in the latest issue of the journal Nature.

In order for the brain to properly develop and function, a vast array of different types of neurons and glia must be generated from a small number of progenitor cells. By better understanding the details of this process, scientists can develop ways to recognize and remedy a range of neural afflictions such as microcephaly or neurodegeneration.

The research, conducted in the laboratory of NYU Biology Professor Claude Desplan, examined this process by studying the neurons in the visual centers of the fruit fly Drosophila. Drosophila is a powerful model for studying neural diversity because of its relative simplicity, although the studied brain structure, termed the medulla, contains approximately 40,000 neurons, belonging to more than 70 cell types.

Specifically, they examined the genes expressed in neuroblasts -- dividing neural stem cells that generate neurons -- in the medulla and how and when they are expressed. Their findings revealed that five genes encoding five different transcription factors -- proteins that bind to specific DNA sequences -- are expressed in a specified order in each of the medulla neuroblasts as they age. The five genes form a temporal cascade: one gene can activate the next gene and repress the previous gene, thus ensuring the progression of the temporal sequence.

It is this process, the researchers found, that controls the sequential generation of different neural types in the Drosophila medulla. These results, together with other studies in the field, suggest that a similar mechanism is utilized to generate neural diversity in the brains of humans and other mammals.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xin Li, Ted Erclik, Claire Bertet, Zhenqing Chen, Roumen Voutev, Srinidhi Venkatesh, Javier Morante, Arzu Celik, Claude Desplan. Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature, 2013; DOI: 10.1038/nature12319

Cite This Page:

New York University. "Sequentially expressed genes in neural progenitors create neural diversity." ScienceDaily. ScienceDaily, 19 June 2013. <www.sciencedaily.com/releases/2013/06/130619164800.htm>.
New York University. (2013, June 19). Sequentially expressed genes in neural progenitors create neural diversity. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/06/130619164800.htm
New York University. "Sequentially expressed genes in neural progenitors create neural diversity." ScienceDaily. www.sciencedaily.com/releases/2013/06/130619164800.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins