Featured Research

from universities, journals, and other organizations

Development of nonvolatile liquid anthracenes for facile full-color luminescence tuning: Application to foldable light-emitting devices expected

Date:
June 23, 2013
Source:
National Institute for Materials Science
Summary:
Scientists have developed a full-color tunable luminescent liquid material with excellent light stability based on an anthracene molecule, which is a general organic fluorescent dye.

Full-colour luminescence panels under ultraviolet (365nm) irradiation by adjustment of the nonvolatile blue-emitting anthracene liquid (left: photo) in the material.
Credit: Image courtesy of National Institute for Materials Science

A research team headed by Dr. Takashi Nakanishi, a Principal Researcher of the NIMS Organic Materials Group, Polymer Materials Unit, developed a full-colour tunable luminescent liquid material with excellent light stability based on an anthracene molecule, which is a general organic fluorescent dye.

Related Articles


A research team headed by Dr. Takashi Nakanishi, a Principal Researcher of the Organic Materials Group (Group Leader: Masayuki Takeuchi), Polymer Materials Unit (Unit Director: Izumi Ichinose) of the National Institute for Materials Science (President: Sukekatsu Ushioda), developed a full-colour tunable luminescent liquid material with excellent photostability based on anthracene, which is a general organic fluorescent dye.

In the development of full-colour display monitors, mobile devices, and other electronic devices, organic molecular and polymer materials are essentially important, as they offer advantages such as light weight, flexibility, and printability. However, in virtually all cases, the light-emitting organic molecular materials developed until now have had difficulties to demonstrate their inherent luminescent performance due to various problems, which include low photostability (durability to prevent discoloration or decolorization under photoirradiation) and aggregation of molecules in the coating process. Moreover, from the viewpoint of production of flexible devices, materials should be free of deterioration of the continuous emissive layer, even when subjected to excessive bending and folding. On the other hand, development of organic molecular materials which enable simple, low-cost manufacture of full-colour luminescence devices, in comparison with individual synthesis of organic molecular materials that display various luminescent colours, is also desired.

The team led by Dr. Nakanishi developed a blue-emitting liquid material which is free of aggregation among adjacent anthracene parts, has a melting point of approximately -60 °C, and is thermally stable up to about 300 °C, by attaching highly flexible branched alkyl chains around an anthracene core moiety, which is a fluorescent general dye molecule. This material is a low-viscosity liquid with viscosity of approximately 0.3 Pa-s at room temperature and is a blue-emitting with an absolute fluorescence quantum yield of ca. 55% and photostable more than 5~10 times longer lifetime than that of commercially-available anthracene dyes. Furthermore, because other luminescent dye molecules can be doped homogeneously in this liquid, it was found that full-colour luminescence tuning is available assisted by up to 96% fluorescence resonance energy transfer (FRET) of dyes by single blue-light (365nm) excitation.

In this research, a blue-emitting anthracene liquid with excellent photostability was synthesized, and a liquid material which displays high quality full-colour luminescence and precise luminescence tuning by the facile operation of doping the liquid with other dyes was developed. Since the nonvolatile liquid material developed in this work can be coated on the surface of various substrates, production of organic multicolour devices with stable single color excitation can be expected. A continuous active emitting layer can be maintained, without breaking or interruption even when bent and folded, which is a favorable property for the development of foldable flexible devices.


Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sukumaran Santhosh Babu, Martin J. Hollamby, Junko Aimi, Hiroaki Ozawa, Akinori Saeki, Shu Seki, Kenji Kobayashi, Keita Hagiwara, Michito Yoshizawa, Helmuth Mφhwald, Takashi Nakanishi. Nonvolatile liquid anthracenes for facile full-colour luminescence tuning at single blue-light excitation. Nature Communications, 2013; 4 DOI: 10.1038/ncomms2969

Cite This Page:

National Institute for Materials Science. "Development of nonvolatile liquid anthracenes for facile full-color luminescence tuning: Application to foldable light-emitting devices expected." ScienceDaily. ScienceDaily, 23 June 2013. <www.sciencedaily.com/releases/2013/06/130623153502.htm>.
National Institute for Materials Science. (2013, June 23). Development of nonvolatile liquid anthracenes for facile full-color luminescence tuning: Application to foldable light-emitting devices expected. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2013/06/130623153502.htm
National Institute for Materials Science. "Development of nonvolatile liquid anthracenes for facile full-color luminescence tuning: Application to foldable light-emitting devices expected." ScienceDaily. www.sciencedaily.com/releases/2013/06/130623153502.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Humanoid Robot Can Recognise and Interact With People

Humanoid Robot Can Recognise and Interact With People

Reuters - Innovations Video Online (Apr. 20, 2015) — An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Drones and Health Apps at Santiago's "Robotics Day"

Drones and Health Apps at Santiago's "Robotics Day"

AFP (Apr. 20, 2015) — Latin American robotics experts gather in Santiago, Chile for "Robotics Day". Video provided by AFP
Powered by NewsLook.com
Japan Humanoid Robot Receives Customers at Department Store

Japan Humanoid Robot Receives Customers at Department Store

AFP (Apr. 20, 2015) — She can smile, she can sing and she can give you guidance at one of the most upscale department stores in Tokyo...a female-looking humanoid makes her debut as a receptionist Video provided by AFP
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) — Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins