Featured Research

from universities, journals, and other organizations

New understanding of why anti-cancer therapy stops working at a specific stage

Date:
June 24, 2013
Source:
The Hebrew University of Jerusalem
Summary:
Researchers have achieved a breakthrough in understanding how and why a promising anti-cancer therapy has failed to achieve hoped-for success in killing tumor cells. Their work could lead to new insights into overcoming this impasse.

Researchers at the Hebrew University of Jerusalem and in California have achieved a breakthrough in understanding how and why a promising anti-cancer therapy has failed to achieve hoped-for success in killing tumor cells. Their work could lead to new insights into overcoming this impasse.

Related Articles


The problematic therapy investigated involves suppression of the protein mTOR (mammalian target Of Rapamycin). MTOR plays an important role in regulating how cells process molecular signals from their environment, and it is observed as strongly activated in many solid cancers.

Drug-induced suppression of mTOR has until now shown success in causing the death of cancer cells in the outer layers of cancerous tumors, but has been disappointing in clinical trials in dealing with the core of those tumors.

Reduced oxygen supply -- hypoxia -- is a near-universal feature of solid tumors that can alter how tumors respond to therapies. It was known that the behavior of mTOR signaling is influenced and altered by the condition of hypoxia, but the mechanism to explain this was unknown.

A research team, which included Prof. Emeritus Raphael D. Levine of the Institute of Chemistry at the Hebrew University of Jerusalem and researchers from the California Institute of Technology and the David Geffen School of Medicine at UCLA, investigated whether the influence of hypoxia on mTOR signaling in model brain cancer systems could explain the poor performance of mTOR drugs. Their work appeared in a recent article in the Proceedings of the National Academy of Sciences (PNAS) in the US.

For their investigation, they employed a new microchip technology that allowed them to measure the mTOR protein signaling network in individual cancer cells, and they interpreted the results using a new set of theoretical tools derived from the physical sciences. The combined approach permitted the simplification of an otherwise complex biological system.

They found that at a particular level of oxygen starvation (hypoxia) that is common in solid tumors, the mTOR signaling network switches between two sets of properties. At the switching point, the theoretical models predicted that mTOR would be intrinsically unresponsive to drugging.

Furthermore, the combined experiment and theory results indicated that the switch could be interpreted as a type of phase transition, which has not been previously observed in biological systems.

This phase transition is the point of the switch between the two signaling networks and happens very abruptly. The change in signaling means that the body of cells studied no longer responds in the way it did before. In the case of the tumor, the "drugging" of the mTOR ceases, meaning that the tumor is no longer inhibited.

These results have several implications. First, they may explain the poor clinical performance of mTOR inhibitors. Second, they indicate that certain complex biological behaviors, which often confound scientists who are seeking to find effective therapies for human diseases, may be understood by the effective application of experimental and theoretical tools derived from the physical sciences.


Story Source:

The above story is based on materials provided by The Hebrew University of Jerusalem. Note: Materials may be edited for content and length.


Journal Reference:

  1. W. Wei, Q. Shi, F. Remacle, L. Qin, D. B. Shackelford, Y. S. Shin, P. S. Mischel, R. D. Levine, J. R. Heath. Hypoxia induces a phase transition within a kinase signaling network in cancer cells. Proceedings of the National Academy of Sciences, 2013; 110 (15): E1352 DOI: 10.1073/pnas.1303060110

Cite This Page:

The Hebrew University of Jerusalem. "New understanding of why anti-cancer therapy stops working at a specific stage." ScienceDaily. ScienceDaily, 24 June 2013. <www.sciencedaily.com/releases/2013/06/130624093522.htm>.
The Hebrew University of Jerusalem. (2013, June 24). New understanding of why anti-cancer therapy stops working at a specific stage. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2013/06/130624093522.htm
The Hebrew University of Jerusalem. "New understanding of why anti-cancer therapy stops working at a specific stage." ScienceDaily. www.sciencedaily.com/releases/2013/06/130624093522.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC: Get Vaccinated for Measles

CDC: Get Vaccinated for Measles

Reuters - US Online Video (Jan. 30, 2015) The CDC is urging people to get vaccinated for measles amid an outbreak that began at Disneyland and has now infected more than 90 people. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Obama To Outline New Plan For Personalized Medicine

Obama To Outline New Plan For Personalized Medicine

Newsy (Jan. 30, 2015) President Obama is expected to speak with drugmakers Friday about his Precision Medicine Initiative first introduced last week. Video provided by Newsy
Powered by NewsLook.com
NFL Concussions Down; Still on Parents' Minds

NFL Concussions Down; Still on Parents' Minds

AP (Jan. 30, 2015) The NFL announced this week that the number of game concussions dropped by a quarter over last season. Still, the dangers of the sport still weigh on players, and parents&apos; minds. (Jan. 30) Video provided by AP
Powered by NewsLook.com
U.S. Wants to Analyze DNA from 1 Million People

U.S. Wants to Analyze DNA from 1 Million People

Reuters - US Online Video (Jan. 30, 2015) The U.S. has proposed analyzing genetic information from more than 1 million American volunteers to learn how genetic variants affect health and disease. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins