Featured Research

from universities, journals, and other organizations

Scientists turn muscular dystrophy defect on and off in cells

Date:
June 28, 2013
Source:
Scripps Research Institute
Summary:
For the first time, scientists have identified small molecules that allow for complete control over a genetic defect responsible for the most common adult onset form of muscular dystrophy.

For the first time, scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified small molecules that allow for complete control over a genetic defect responsible for the most common adult onset form of muscular dystrophy. These small molecules will enable scientists to investigate potential new therapies and to study the long-term impact of the disease.

Related Articles


"This is the first example I know of at all where someone can literally turn on and off a disease," said TSRI Associate Professor Matthew Disney, whose new research was published June 28, 2013, by the journal Nature Communications. "This easy approach is an entirely new way to turn a genetic defect off or on."

Myotonic dystrophy is an inherited disorder, the most common form of a group of conditions called muscular dystrophies that involve progressive muscle wasting and weakness. Myotonic dystrophy type 1 is caused a type of RNA defect known as a "triplet repeat," a series of three nucleotides repeated more times than normal in an individual's genetic code. In this case, a cytosine-uracil-guanine (CUG) triplet repeat binds to the protein MBNL1, rendering it inactive and resulting in RNA splicing abnormalities.

To find drug candidates that act against the defect, Disney and his colleagues analyzed the results of a National Institutes of Health (NIH)-sponsored screen of more than 300,000 small molecules that inhibit a critical RNA-protein complex in the disease.

The team divided the NIH hits into three "buckets" -- the first group bound RNA, the second bound protein, and a third whose mechanism was unclear. The researchers then studied the compounds by looking at their effect on human muscle tissue both with and without the defect.

Startlingly, diseased muscle tissue treated with RNA-binding compounds caused signs of the disease to go away. In contrast, both healthy and diseased tissue treated with the protein-binding compounds showed the opposite effect -- signs of the disease either appeared (in healthy tissue) or became worse.

The new compounds will serve as useful tools to study the disease on a molecular level. "In complex diseases, there are always unanticipated mechanisms," Disney noted. "Now that we can reverse the disease at will, we can study those aspects of it."

In addition, Disney said, with the new discovery, scientists will be able to develop a greater understanding of how to control RNA splicing with small molecules. RNA splicing can cause a host of diseases that range from sickle-cell disease to cancer, yet prior to this study, no tools were available to control specific RNA splicing.

The first authors of the study, "Induction and Reversal of Myotonic Dystrophy Type 1 Pre-mRNA Splicing Defects by Small Molecules," are Jessica L. Childs-Disney of TSRI, Ewa Stepniak-Konieczna of Adam Mickiewicz University (Poland) and Tuan Tran of TSRI. Other authors include Ilyas Yildirim and George C. Schatz of Northwestern University; HaJeung Park of TSRI; Catherine Z. Chen, Noel Southall, Juan J. Marugan, Samarjit Patnaik, Wei Zheng and Chris P. Austin of the NIH; Krzysztof Sobczak of Adam Mickiewicz University; and Charles A. Thornton and Jason Hoskins of the University of Rochester.

The study was funded by TSRI; the Muscular Dystrophy Association (158552); the National Institutes of Health (3R01GM079235 and 1R01GM079235; AR049077 and U54NS48843); the National Cancer Institute (1U54CA143869); the Molecular Libraries Initiative of the National Institutes of Health Roadmap for Medical Research; the Marigold Foundation and the Foundation for Polish Science-TEAM program co-financed by the European Union within the European Regional Development Fund.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jessica L. Childs-Disney, Ewa Stepniak-Konieczna, Tuan Tran, Ilyas Yildirim, HaJeung Park, Catherine Z. Chen, Jason Hoskins, Noel Southall, Juan J. Marugan, Samarjit Patnaik, Wei Zheng, Chris P. Austin, George C. Schatz, Krzysztof Sobczak, Charles A. Thornton, Matthew D. Disney. Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3044

Cite This Page:

Scripps Research Institute. "Scientists turn muscular dystrophy defect on and off in cells." ScienceDaily. ScienceDaily, 28 June 2013. <www.sciencedaily.com/releases/2013/06/130628091710.htm>.
Scripps Research Institute. (2013, June 28). Scientists turn muscular dystrophy defect on and off in cells. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/06/130628091710.htm
Scripps Research Institute. "Scientists turn muscular dystrophy defect on and off in cells." ScienceDaily. www.sciencedaily.com/releases/2013/06/130628091710.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins