Featured Research

from universities, journals, and other organizations

Is it alive or dead? How to measure the thermal signatures of single cells and assess their biological activity

Date:
June 28, 2013
Source:
American Institute of Physics (AIP)
Summary:
To the ancients, probing the philosophical question of how to distinguish the living from the dead centered on the "mystery of the vital heat." To modern microbiology, this question was always less mysterious than it was annoying -- researchers have known that biological processes should produce thermal signatures, even within single cells, but nobody ever knew how to measure them. Now, a group of mechanical engineers in Korea have discovered a way to measure the "thermal conductivity" of three types of cells taken from human and rat tissues and placed in individual micro-wells.

To the ancients, probing the philosophical question of how to distinguish the living from the dead centered on the "mystery of the vital heat." To modern microbiology, this question was always less mysterious than it was annoying -- researchers have known that biological processes should produce thermal signatures, even within single cells, but nobody ever knew how to measure them.

Now, a group of mechanical engineers from Pohang University of Science and Technology in Korea have discovered a way to measure the "thermal conductivity" of three types of cells taken from human and rat tissues and placed in individual micro-wells. They showed that they could detect uniform heat signatures from the various cells and measured significant difference between dead and living ones, suggesting a new way to probe cells for biological activity.

A lone cell is fantastically small, often only about 10 microns across (10 millionths of a meter), and this size has thwarted thermodynamic measurements of single cells. Writing in the journal Applied Physics Letters, a team led by Dongsik Kim and Jaesung Park describes how their novel nanoscale biosensing technique can measure the thermal conductivity of a single cell.

"In the short-term, this biosensing technique can be used to measure cell viability," said Kim. "In the long-term, we hope to refine it to develop a non-invasive, rapid means for early diagnosis of diseases such as cancer based on differences in the thermal properties of cells."

While the fundamental heat signatures the researchers detected are not exactly what the ancient philosophers imagined, measuring them may answer more mysteries than they could have dreamed.

The article, "Thermal conductivity of single biological cells and relation with cell viability" by Byoung Kyoo Park, Namwoo Yi, Jaesung Park, and Dongsik Kim appears in the journal Applied Physics Letters.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Byoung Kyoo Park, Namwoo Yi, Jaesung Park, Dongsik Kim. Thermal conductivity of single biological cells and relation with cell viability. Applied Physics Letters, 2013; 102 (20): 203702 DOI: 10.1063/1.4807471

Cite This Page:

American Institute of Physics (AIP). "Is it alive or dead? How to measure the thermal signatures of single cells and assess their biological activity." ScienceDaily. ScienceDaily, 28 June 2013. <www.sciencedaily.com/releases/2013/06/130628102927.htm>.
American Institute of Physics (AIP). (2013, June 28). Is it alive or dead? How to measure the thermal signatures of single cells and assess their biological activity. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2013/06/130628102927.htm
American Institute of Physics (AIP). "Is it alive or dead? How to measure the thermal signatures of single cells and assess their biological activity." ScienceDaily. www.sciencedaily.com/releases/2013/06/130628102927.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins