Featured Research

from universities, journals, and other organizations

A potentially life-saving protein takes shape

Date:
July 2, 2013
Source:
University of Maryland
Summary:
The protein ubiquitin, found in all membranous cells, may hold the key to treating diseases from cancer to Parkinson's. Structural biologists examine an omnipresent but rarely studied form of ubiquitin, the polymeric ubiquitin chains linked by the animo acid Lysine-11. The team finds these chains are remarkably flexible and probably multi-functional.

A tiny protein called ubiquitin -- so named because it is present in every cell of living things as dissimilar as hollyhocks and humans -- may hold the key to treatment for a variety of diseases from Parkinson's to diabetes. The protein, found in all eukaryotes (organisms with membranous cells), was considered unimportant when it was described in 1975. But scientists now know ubiquitin takes many different forms and is important in basic cellular processes, from controlling cells' circadian clocks to clearing away the harmful build-up of cells found in cancer and other diseases.

Related Articles


To maximize ubiquitin's potential for treating diseases, researchers are working to identify the protein's dizzying array of structures, and to understand each form's function. Ubiquitin forms polymeric chains linked by specific amino acids. Each ubiquitin protein can connect to its neighbor through one of eight different amino acids, and each combination appears to do something different in a normal cell, says University of Maryland structural biologist David Fushman, whose lab studies these ubiquitin chains and their linkages.

Imagine the cell as a dance floor, thronged with proteins seeking partners, says Fushman, who has studied ubiquitin since 2000. When two ubiquitins join through a lysine, "it's like two hands meeting, but with just a single finger touching that's specific to that lysine." The choice of lysine determines the shape of the ubiquitin chain, and probably also determines its function.

Fushman and his colleagues' newly published research focuses on one of the most common and least studied linkages, the polymeric chain formed by the amino acid Lysine-11. The ubiquitin chains linked by Lysine-11 "are directly involved in cell cycle regulation," Fushman says. To turn that knowledge into medically useful information, "we have to understand exactly how they form and with whom they interact."

Most work of this type is done in a test tube and uses x-ray crystallography to map the structures. Fushman's lab uses a different method that he says produces an environment somewhat closer to nature. The team used nuclear magnetic resonance spectroscopy (NMR) and other techniques to map the Lysine-11-linked chains.

The researchers found these chains take on a different shape in solution than in crystals, and are more flexible than was previously thought. Ubiquitin chains linked via Lysine-11 can form various three-dimensional shapes, and as salt concentrations change, the chains' shape also changes, the team found.

Researcher Carlos Castañeda and others in the Fushman lab reported their results in a paper published July 2 in the biological journal Structure.

The most-studied ubiquitin chain, linked via Lysine-48, is known as a "protein destroyer" because it labels cellular proteins to be broken up for later recycling. The UMD team found the cellular receptors responsible for breaking down proteins interact with Lysine-11 chains, but not as efficiently as with Lysine-48 chains. Therefore protein destruction does not appear to be the main task of the Lysine-11 linked chain, Fushman says; its function is something different and perhaps equally vital to maintaining healthy cells.


Story Source:

The above story is based on materials provided by University of Maryland. Note: Materials may be edited for content and length.


Journal Reference:

  1. Carlos A. Castañeda, Tanuja R. Kashyap, Mark A. Nakasone, Susan Krueger, David Fushman. Unique Structural, Dynamical, and Functional Properties of K11-Linked Polyubiquitin Chains. Structure, 2013; 21 (7): 1168 DOI: 10.1016/j.str.2013.04.029

Cite This Page:

University of Maryland. "A potentially life-saving protein takes shape." ScienceDaily. ScienceDaily, 2 July 2013. <www.sciencedaily.com/releases/2013/07/130702123354.htm>.
University of Maryland. (2013, July 2). A potentially life-saving protein takes shape. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2013/07/130702123354.htm
University of Maryland. "A potentially life-saving protein takes shape." ScienceDaily. www.sciencedaily.com/releases/2013/07/130702123354.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) — Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins