Featured Research

from universities, journals, and other organizations

Test can accurately and swiftly detect most leading causes of bacterial blood stream infections

Date:
July 2, 2013
Source:
Public Library of Science
Summary:
A new automated diagnostic test can quickly and accurately identify most leading causes of Gram-positive bacterial blood stream infections and the presence of three antibiotic resistance genes, according to a new study. The findings from the study suggest that the new technology could lead to faster diagnosis and treatment of patients suffering from sepsis.

A new automated diagnostic test can quickly and accurately identify most leading causes of Gram-positive bacterial blood stream infections and the presence of three antibiotic resistance genes, according to a new study published this week in PLOS Medicine. The findings from the study, conducted by a team of researchers led by Nathan Ledeboer from the Medical College of Wisconsin (MCW), USA, suggest that the new technology could lead to faster diagnosis and treatment of patients suffering from sepsis.

Severe sepsis is a life-threatening condition that is usually triggered by a bacterial infection of the bloodstream. In the most severe cases of sepsis multiple organs can fail and in the US alone sepsis causes up to 250,000 deaths a year. The outcome of sepsis is affected by many factors, but fast, accurate identification of the bacterial infection and determination of its antibiotic susceptibility is essential to ensure that patients receive appropriate antibiotics. In the study published this week the researchers evaluated a new test, called Verigene BC-GP, that has been designed to simultaneously detect the DNA of 12 species of Gram-positive bacteria, which are the most common cause of bacterial bloodstream infections, and three antibiotic resistance genes in cultures grown from patient blood samples.

The researchers evaluated the Verigene BC-GP test using 1252 blood cultures from five US clinical centers and 397 contrived cultures (that contained rarer bacterial species found in blood stream infections) compared to standard culture techniques. They found that the test was able to correctly identify patients who were positive for a specific infection in 92.6% to 100% of samples and to correctly determine patients that did not have a specific infection in 94.5-100% of samples. However, about 7.5% of cultures contained Gram-positive bacteria that the test was not designed to detect. The researchers also found that the test was able accurately identifying three bacterial resistance genes (the mecA, vanA, and vanB genes), which confer resistance to the antibiotics vancomycin and methicillin. The test takes about 2 hours to run and in an analysis of 107 blood culture broths the researchers found the test was able to return a result about 42 hours faster than the conventional culture methods.

The researchers say, "[t]he high sensitivity and specificity characteristics of this test, coupled with on-demand testing capability and a [2 hour turnaround time] enable reporting of both the identification and antimicrobial resistance genes of bacteria obtained from blood culture significantly faster than using routine culture methods."

The faster diagnosis should improve the care of patients with sepsis by allowing physicians to prescribe appropriate antibiotics much earlier than is currently possible.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Blake W. Buchan, Christine C. Ginocchio, Ryhana Manii, Robert Cavagnolo, Preeti Pancholi, Lettie Swyers, Richard B. Thomson, Christopher Anderson, Karen Kaul, Nathan A. Ledeboer. Multiplex Identification of Gram-Positive Bacteria and Resistance Determinants Directly from Positive Blood Culture Broths: Evaluation of an Automated Microarray-Based Nucleic Acid Test. PLoS Medicine, 2013; 10 (7): e1001478 DOI: 10.1371/journal.pmed.1001478

Cite This Page:

Public Library of Science. "Test can accurately and swiftly detect most leading causes of bacterial blood stream infections." ScienceDaily. ScienceDaily, 2 July 2013. <www.sciencedaily.com/releases/2013/07/130702173154.htm>.
Public Library of Science. (2013, July 2). Test can accurately and swiftly detect most leading causes of bacterial blood stream infections. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2013/07/130702173154.htm
Public Library of Science. "Test can accurately and swiftly detect most leading causes of bacterial blood stream infections." ScienceDaily. www.sciencedaily.com/releases/2013/07/130702173154.htm (accessed August 20, 2014).

Share This




More Plants & Animals News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins