Featured Research

from universities, journals, and other organizations

New method rapidly identifies specific strains of illness

Date:
July 10, 2013
Source:
Boston University Medical Center
Summary:
Researchers have developed a method to rapidly identify pathogenic species and strains causing illnesses, such as pneumonia, that could help lead to earlier detection of disease outbreaks and pinpoint effective treatments more quickly.

Researchers from Boston University School of Medicine (BUSM) and George Washington University (GWU) have developed a method to rapidly identify pathogenic species and strains causing illnesses, such as pneumonia, that could help lead to earlier detection of disease outbreaks and pinpoint effective treatments more quickly.

Related Articles


The findings are featured online in the journal Genome Research.

Emerging sequencing technologies have revolutionized the collection of genomic data for bioforensics, biosurveillance and for use in clinical settings. However, new approaches are being developed to analyze these large volumes of genetic data. Principal investigator Evan Johnson, PhD, assistant professor of medicine at BUSM, and Keith Crandall, PhD, director of the Computational Biology Institute at GWU, have created a statistical framework called Pathoscope to identify pathogenic genetic sequences from infected tissue samples.

This unique approach can accurately discriminate between closely related strains of the same species with little coverage of the pathogenic genome. The method also can determine the complete composition of known pathogenic and benign organisms in a biological sample. No other method can accurately identify multiple species or substrains in such a direct and automatic way. Current methods, such as the standard polymerase chain reaction detection or microscope observation, are often imperfect and time-consuming.

"Pathoscope is like completing a complex jigsaw puzzle. Instead of manually assembling the puzzle, which can take days or weeks of tedious effort, we use a statistical algorithm that can determine how the picture should look without actually putting it together," said Johnson. "Our method can characterize a biological sample faster, more accurately and in a more automated fashion than any other approach out there."

This work will be relevant in a broad range of scenarios. For example, in hospitals, this sequencing method will allow for rapid screening of thousands of infectious pathogens simultaneously, while being sensitive enough to monitor disease outbreaks caused by specific pathogenic strains. Veterinarians can even apply the method in their practices. This research is also applicable outside of clinical settings, allowing officials to quickly identify agents of bioterrorism (e.g. in a tainted letter) and harmful pathogens on hard surfaces, soil, water or in food products.

"This approach has the ability to drastically change the process for identifying and combating pathogens, whether they're in a hospital, veterinarian's office or salmon stream," Crandall said. Researchers plan to conduct more studies to further verify the efficacy of their approach, and will soon begin to work with the aquaculture industry, helping fishermen with water-quality surveillance.

Funding for this research was provided in part by the National Institutes of Health's (NIH) National Human Genome Research Institute under grant award number R01HG00569.


Story Source:

The above story is based on materials provided by Boston University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Owen E. Francis, Matthew Bendall, Solaiappan Manimaran, Changjin Hong, Nathan L. Clement, Eduardo Castro-Nallar, Quinn Snell, G. Bruce Schaalje, Mark J. Clement, Keith A. Crandall, and W. Evan Johnson. Pathoscope: Species identification and strain attribution with unassembled sequencing data. Genome Research, 2013; DOI: 10.1101/gr.150151.112

Cite This Page:

Boston University Medical Center. "New method rapidly identifies specific strains of illness." ScienceDaily. ScienceDaily, 10 July 2013. <www.sciencedaily.com/releases/2013/07/130710122010.htm>.
Boston University Medical Center. (2013, July 10). New method rapidly identifies specific strains of illness. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/07/130710122010.htm
Boston University Medical Center. "New method rapidly identifies specific strains of illness." ScienceDaily. www.sciencedaily.com/releases/2013/07/130710122010.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins