Featured Research

from universities, journals, and other organizations

Supercooled water transforms into new form of liquid

Date:
July 10, 2013
Source:
University of Arkansas, Fayetteville
Summary:
Researchers have identified that water, when chilled to a very low temperature, transforms into a new form of liquid. Through a simulation performed in "supercooled" water, the research team confirmed a "liquid-liquid" phase transition at 207 Kelvins, or 87 degrees below zero on the Fahrenheit scale.

Water and ice (stock image). Researchers have identified that water, when chilled to a very low temperature, transforms into a new form of liquid.
Credit: Oscar Espinosa / Fotolia

Researchers at the University of Arkansas have identified that water, when chilled to a very low temperature, transforms into a new form of liquid.

Through a simulation performed in “supercooled” water, a research team led by chemist Feng “Seymour” Wang, confirmed a “liquid-liquid” phase transition at 207 Kelvins, or 87 degrees below zero on the Fahrenheit scale.

The properties of supercooled water are important for understanding basic processes during cryoprotection, which is the preservation of tissue or cells by liquid nitrogen so they can be thawed without damaged, said Wang, an associate professor in the department of chemistry and biochemistry in the J. William Fulbright College of Arts and Sciences.

“On a microsecond time scale, the water did not actually form ice but it transformed into a new form of liquid,” Wang said. “The study provides strong supporting evidence of the liquid-liquid phase transition and predicted a temperature of minimum density if water can be cooled well below its normal freezing temperature. Our study shows water will expand at a very low temperature even without forming ice.”

The findings were published online July 8 in the journal Proceedings of the National Academy of Sciences. Wang wrote the article, “Liquid–liquid transition in supercooled water suggested by microsecond simulations.” Research associates Yaping Li and Jicun Li assisted with the study.

The liquid–liquid phase transition in supercooled water has been used to explain many anomalous behaviors of water. Direct experimental veri?cation of such a phase transition had not been accomplished, and theoretical studies from different simulations contradicted each other, Wang said.

The University of Arkansas research team investigated the liquid–liquid phase transition using a simulation model called Water potential from Adaptive Force Matching for Ice and Liquid (WAIL). While normal water is a high-density liquid, the low-density liquid emerged at lower temperatures, according to the simulation.

The research was supported by a National Science Foundation Faculty Early Career Development Award and by a startup grant from the U of A. The University of Arkansas High Performance Computing Center provided the main computational resource for the study.


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y. Li, J. Li, F. Wang. Liquid-liquid transition in supercooled water suggested by microsecond simulations. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1309042110

Cite This Page:

University of Arkansas, Fayetteville. "Supercooled water transforms into new form of liquid." ScienceDaily. ScienceDaily, 10 July 2013. <www.sciencedaily.com/releases/2013/07/130710140824.htm>.
University of Arkansas, Fayetteville. (2013, July 10). Supercooled water transforms into new form of liquid. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2013/07/130710140824.htm
University of Arkansas, Fayetteville. "Supercooled water transforms into new form of liquid." ScienceDaily. www.sciencedaily.com/releases/2013/07/130710140824.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins