Featured Research

from universities, journals, and other organizations

Jagged graphene edges can slice into cell membranes

Date:
July 10, 2013
Source:
Brown University
Summary:
Researchers have shown how tiny graphene sheets can be big trouble for cells. Sharp corners and jagged edges on the sheets puncture cell membranes, allowing the sheet to enter the cell and disrupt function. The new understanding of how graphene interacts with cells could lead to safer production of this important nanomaterial.

Rough edges at the nanoscale: The bottom corner of a piece of graphene penetrates a cell membrane. Mechanical properties — rough edges, sharp corners — can make graphene dangerous to human cells. Scale bar represents two microns.
Credit: Kane lab/Brown University

Researchers from Brown University have shown how tiny graphene microsheets -- ultra-thin materials with a number of commercial applications -- could be big trouble for human cells.

The research shows that sharp corners and jagged protrusions along the edges of graphene sheets can easily pierce cell membranes. After the membrane is pierced, an entire graphene sheet can be pulled inside the cell where it may disrupt normal function. The new insight may be helpful in finding ways to minimize the potential toxicity of graphene, said Agnes Kane, chair of the Department of Pathology and Laboratory Medicine at Brown and one of the study's authors.

"At a fundamental level, we want understand the features of these materials that are responsible for how they interact with cells," Kane said. "If there's some feature that is responsible for its toxicity, then maybe the engineers can engineer it out."

The findings were published online July 9 in Proceedings of the National Academy of Sciences.

Discovered about a decade ago, graphene is a sheet of carbon just one atom thick. It is incredibly strong despite being so thin and has remarkable electronic, mechanical, and photonic properties. Commercial applications in small electronic devices, solar cells, batteries and even medical devices are just around the corner. But not much is known about what effect these materials might have if they get inside the body either during the manufacturing process or during a product's lifecycle.

"These materials can be inhaled unintentionally, or they may be intentionally injected or implanted as components of new biomedical technologies," said Robert Hurt, professor of engineering and one of the study's authors. "So we want to understand how they interact with cells once inside the body."

These latest findings come from an ongoing collaboration between biologists, engineers, and material scientists at Brown aimed at understanding the toxic potential of a wide variety of nanomaterials. Their work on graphene started with some seemingly contradictory findings.

Preliminary research by Kane's biology group had shown that graphene sheets can indeed enter cells, but it wasn't clear how they got there. Huajian Gao, professor of engineering, tried to explain those results using powerful computer simulations, but he ran into a problem. His models, which simulate interactions between graphene and cell membranes at the molecular level, suggested that it would be quite rare for a microsheet to pierce a cell. The energy barrier required for a sheet to cut the membrane was simply too high, even when the sheet hit edge first.

The problem turned out to be that those initial simulations assumed a perfectly square piece of graphene. In reality, graphene sheets are rarely so pristine. When graphene is exfoliated, or peeled away from thicker chunks of graphite, the sheets come off in oddly shaped flakes with jagged protrusions called asperities. When Gao reran his simulations with asperities included, the sheets were able to pierce the membrane much more easily.

Annette von dem Bussche, assistant professor of pathology and laboratory medicine, was able to verify the model experimentally. She placed human lung, skin and immune cells in Petri dishes along with graphene microsheets. Electron microscope images confirmed that graphene entered the cells starting at rough edges and corners. The experiments showed that even fairly large graphene sheets of up to 10 micrometers could be completely internalized by a cell.

"The engineers and the material scientists can analyze and describe these materials in great detail," Kane said. "That allows us to better interpret the biological impacts of these materials. It's really a wonderful collaboration."

From here, the researchers will look in more detail into what happens once a graphene sheet gets inside the cell. But Kane says this initial study provides an important start in understanding the potential for graphene toxicity.

"This is about the safe design of nanomaterials," she said. "They're man-made materials, so we should be able to be clever and make them safer."

Other contributors to the study were Brown graduate students Yinfeng Li (now a professor at Shanghai Jiao Tong University), Hongyan Yuan, and Megan Creighton. The research was supported by the National Science Foundation (grants CMMI-1028530 and CBET-1132446) and the Superfund Research Program of the National Institute of Environmental Health Sciences (grant P42 ES013660).


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y. Li, H. Yuan, A. von dem Bussche, M. Creighton, R. H. Hurt, A. B. Kane, H. Gao. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1222276110

Cite This Page:

Brown University. "Jagged graphene edges can slice into cell membranes." ScienceDaily. ScienceDaily, 10 July 2013. <www.sciencedaily.com/releases/2013/07/130710142010.htm>.
Brown University. (2013, July 10). Jagged graphene edges can slice into cell membranes. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2013/07/130710142010.htm
Brown University. "Jagged graphene edges can slice into cell membranes." ScienceDaily. www.sciencedaily.com/releases/2013/07/130710142010.htm (accessed September 3, 2014).

Share This



More Matter & Energy News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Halliburton Reaches $1B Gulf Spill Settlement

Halliburton Reaches $1B Gulf Spill Settlement

AP (Sep. 2, 2014) Halliburton's agreement to pay more than $1 billion to settle numerous claims involving the 2010 BP oil spill could be a way to diminish years of costly litigation. A federal judge still has to approve the settlement. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Google Teases India Event, Possible Android One Reveal

Google Teases India Event, Possible Android One Reveal

Newsy (Sep. 1, 2014) Google has announced a Sept. 15 event in India during which they're expected to reveal their Android One phones. Video provided by Newsy
Powered by NewsLook.com
Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins