Featured Research

from universities, journals, and other organizations

Molecular discovery puts cancer treatment in a new perspective

Date:
July 11, 2013
Source:
University of Copenhagen
Summary:
Researchers have obtained ground-breaking new knowledge about proteases - important enzymes which, among other things, play a role in the development of cancer cells. The findings may be significant for the development of cancer drugs.

Researchers from the University of Copenhagen and the National Institutes of Health have obtained ground-breaking new knowledge about proteases -- important enzymes which, among other things, play a role in the development of cancer cells. The findings may be significant for the development of cancer drugs, and have just been published in Journal of Biological Chemistry.

Related Articles


In a joint effort with the National Institutes of Health, a group of researchers from the University of Copenhagen have taken a step closer to being able to design a more effective anticancer treatment by mapping a previously unknown molecular mechanism.

The group has been working with proteases, important enzymes which are responsible for maintaining different types of tissues in the body while also being involved in many -diseases, including cancer. Cancer cells can exploit an over-production of proteases to force their way into the body so they can quickly grow and create a space for themselves in which to spread.

"So far, we have been unable to treat cancer patients with drugs which can effectively stop cancer cells from spreading, but having now discovered that an important function of proteases has been overlooked, we have the possibility of designing new drugs. So far, cancer drugs have primarily been shaped to stop the proteases from cleaving and thereby activating processes, but this is probably insufficient. Surprisingly, our studies show that proteases perform another function in addition to cleaving; they are also able to bind to one another, besides from cleaving, and kick-starting various cellular processes," says Stine Friis, a postdoc at the Department of Cellular and Molecular Medicine at the University of Copenhagen. She has spearheaded the new research in collaboration with the National Institutes of Health.

Overlooked functions for proteases

One example of proteases making a positive difference is in connection with wound healing. When tissue is damaged, a molecular mechanism starts whereby a protease cleaves and activates the next protease, which then cleaves and activates a third protease, and so on. In other words, it sets off a repair mechanism -- a kind of domino effect whereby a single protease can issue a small signal to a whole string of proteases. However, this mechanism can also be exploited by cancer cells, enabling them to spread.

"My generation of molecular biologists learned that proteases are enzymes which are capable of cleaving and activating other proteases, and that this molecular mechanism -- called proteolysis -- is their sole function. However, our new research findings show that proteases have functions which until now have been overlooked. Yet the key to designing effective drugs is to understand all the molecular mechanisms that make the cancer grow," says Stine Friis.

Bind instead of cleave

More specifically, the research group has worked with two proteases, matriptase and prostasin, which are both essential for maintaining healthy cells in the skin, intestines and other organs. However, in contrast to what has so far been believed, the two proteases do not activate one another by one cleaving the next, i.e. through proteolysis. In fact, prostasin's role in activating matriptase is surprisingly independent of this mechanism. Instead of cleaving one another, the two proteases bind to each other, which is most unusual, and thereby start important processes.

Through knowing about this previously overseen but vital function of how proteases activate the cell's signals, researchers hope to improve our understanding of how proteases operate in the body. And not just in normal circumstances, but also in situations where something malfunctions with the protease balance, such as in cancer.

"Hopefully our new findings will inspire others to think outside the box, opening the doors to innovation with drugs aimed at regulating protease activity, such as anticancer drugs. The drugs we design today are developed to halt the cleaving process, but even though it is stopped, some proteases can apparently continue to transmit signals by binding to instead of cleaving one another. If we can stop the binding, we should be able to develop better drugs, which in the long term will bring us closer to developing successful cancer treatments. If you only understand how one half of an engine functions, it's almost impossible to repair it," says Stine Friis.


Story Source:

The above story is based on materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Friis, K. Uzzun Sales, S. Godiksen, D. E. Peters, C.-Y. Lin, L. K. Vogel, T. H. Bugge. A Matriptase-Prostasin Reciprocal Zymogen Activation Complex with Unique Features: PROSTASIN AS A NON-ENZYMATIC CO-FACTOR FOR MATRIPTASE ACTIVATION. Journal of Biological Chemistry, 2013; 288 (26): 19028 DOI: 10.1074/jbc.M113.469932

Cite This Page:

University of Copenhagen. "Molecular discovery puts cancer treatment in a new perspective." ScienceDaily. ScienceDaily, 11 July 2013. <www.sciencedaily.com/releases/2013/07/130711113428.htm>.
University of Copenhagen. (2013, July 11). Molecular discovery puts cancer treatment in a new perspective. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2013/07/130711113428.htm
University of Copenhagen. "Molecular discovery puts cancer treatment in a new perspective." ScienceDaily. www.sciencedaily.com/releases/2013/07/130711113428.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
Dads-To-Be Also Experience Hormone Changes During Pregnancy

Dads-To-Be Also Experience Hormone Changes During Pregnancy

Newsy (Dec. 18, 2014) A study from University of Michigan researchers found that expectant fathers see a decrease in testosterone as the baby's birth draws near. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins