Featured Research

from universities, journals, and other organizations

Findings offer alternative approach to creating a universal influenza vaccine

Date:
July 15, 2013
Source:
The Wistar Institute
Summary:
Scientists have determined that it might be possible to stimulate the immune system against multiple strains of influenza virus by sequentially vaccinating individuals with distinct influenza strains isolated over the last century. It represents a different approach to creating a "universal" flu vaccine. Their results also suggest that world health experts might need to re-evaluate standard tests used for surveillance of novel influenza strains.

A team of scientists, led by researchers at The Wistar Institute, has determined that it might be possible to stimulate the immune system against multiple strains of influenza virus by sequentially vaccinating individuals with distinct influenza strains isolated over the last century.

Their results also suggest that world health experts might need to re-evaluate standard tests used for surveillance of novel influenza strains. Their findings are published in the Journal of Experimental Medicine, available online now.

According to the Wistar researchers, their analysis could lead to an alternative approach to creating a "universal" flu vaccine -- a vaccine that would provide resistance to seasonal and pandemic influenza strains over many years, negating the need for an annual flu shot.

"Influenza vaccines are very safe and provide good protection. However, we need to continuously update seasonal flu vaccines because influenza viral proteins change over time," said Scott Hensley, Ph.D., an assistant professor at The Wistar Institute and corresponding author on the study. "Since influenza viruses are constantly changing, we all have unique pre-exposure histories that depend on when we were born and the specific types of viruses that circulated during our childhood."

Vaccines work by stimulating the immune system to produce antibody proteins against particles (called antigens) from an infectious agent, such as bacteria or a virus. The immune system saves the cells that produce effective antibodies, which then provide immunity against future attacks by the same or similar infectious agents. Despite the availability of a vaccine, seasonal influenza typically kills 36,000 Americans, alone, and nearly a half million individuals around the world, in total.

Most current efforts to create universal vaccines hinge on the idea of generating antibodies against a portion of the virus that is relatively unchanged year-to-year.

"Our studies demonstrate that individuals that are infected sequentially with dramatically different influenza strains mount antibody responses against a conserved region of influenza virus," Hensley said. "Since we now know that pre-exposure events can influence vaccine responsiveness in a predictable way, we can begin to design vaccine regiments that preferentially elicit antibody responses against conserved regions of influenza virus."

The researchers began their current work by studying human antibody responses against the 2009 pandemic H1N1 virus. The 2009 strain is antigenically distinct from recently circulating seasonal H1N1 strains, and a distant relative of the virus that caused the devastating "Spanish Flu" of the early 20th century. The most effective antibodies are those that bind to a particular portion (or "epitope") of hemagglutinin (HA), a protein produced by the influenza virus.

According to Hensley, however, their chief insight occurred when his team hit the "sort" button on a spreadsheet document, thereby arranging all samples by age of the donor. Different aged people, they found, mount vastly different antibody responses to pandemic H1N1, depending on whether or not they were exposed to a seasonal H1N1 years earlier. "We can now accurately predict how individuals will respond to the pandemic H1N1 strain based on the year that they were born," Hensley said.

Their investigation also suggests that ferrets with no prior influenza exposure might not be the most reliable predictor of human immune responses. Anti-sera -- or blood containing antibodies--created in these "naοve" ferrets are commonly used for influenza surveillance. The researchers found that naοve ferrets mount a response to an epitope in a decidedly different portion of HA than do most humans, but subsequently infecting these ferrets with other historical influenza strains can shift the antibody response toward the epitope that human antibodies recognize. This shift might also be replicable in humans through multiple infections or vaccinations, the researchers believe.

According to Hensley, one strategy would be to sequentially vaccinate children with antigenically distinct viral strains. "Babies are born with an immunological blank slate," Hensley said. "We may be able to strategically vaccinate our children with antigenically diverse influenza strains to elicit antibodies against conserved viral epitopes."

The portion of this research conducted at The Wistar Institute was funded by National Institute of Allergy and Infectious Diseases grant K22AI091651, the Commonwealth of Pennsylvania CURE Program, and a University of Pennsylvania Institute for Translational Medicine and Therapeutics grant.

Members of the Hensley laboratory that co-authored this study include Yang Li, Jaclyn L. Myers, Ph.D., Colleen B. Sullivan, Jonathan Madara, and Susanne Linderman. Additional co-authors also include Qin Liu, M.D., Ph.D., of Wistar; Joshua B. Plotkin, Ph.D., and David L. Bostick, Ph.D. of the University of Pennsylvania; Susanna Esposito, M.D., and Nicola Principi, M.D. from the University of Milan, Donald M. Carter, Ph.D., and Ted M. Ross, Ph.D., formerly of the University of Pittsburgh; Jens Wrammert, Ph.D., and Rafi Ahmed, Ph.D., of Emory University, and Patrick Wilson, Ph.D. of University of Chicago.


Story Source:

The above story is based on materials provided by The Wistar Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y. Li, J. L. Myers, D. L. Bostick, C. B. Sullivan, J. Madara, S. L. Linderman, Q. Liu, D. M. Carter, J. Wrammert, S. Esposito, N. Principi, J. B. Plotkin, T. M. Ross, R. Ahmed, P. C. Wilson, S. E. Hensley. Immune history shapes specificity of pandemic H1N1 influenza antibody responses. Journal of Experimental Medicine, 2013; DOI: 10.1084/jem.20130212

Cite This Page:

The Wistar Institute. "Findings offer alternative approach to creating a universal influenza vaccine." ScienceDaily. ScienceDaily, 15 July 2013. <www.sciencedaily.com/releases/2013/07/130715091219.htm>.
The Wistar Institute. (2013, July 15). Findings offer alternative approach to creating a universal influenza vaccine. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/07/130715091219.htm
The Wistar Institute. "Findings offer alternative approach to creating a universal influenza vaccine." ScienceDaily. www.sciencedaily.com/releases/2013/07/130715091219.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins