Featured Research

from universities, journals, and other organizations

Artificial organelles transform free radicals into water and oxygen

Date:
July 16, 2013
Source:
Universität Basel
Summary:
Researchers have successfully developed artificial organelles that are able to support the reduction of toxic oxygen compounds. This opens up new ways in the development of novel drugs that can influence pathological states directly inside the cell.

Researchers at the University of Basel have successfully developed artificial organelles that are able to support the reduction of toxic oxygen compounds. This opens up new ways in the development of novel drugs that can influence pathological states directly inside the cell.

Related Articles


The results have been published in the journal Nano Letters.

Free oxygen radicals are produced either as metabolic byproduct, or through environmental influences such as UV-rays and smog. Is the concentration of free radicals inside the organism elevated to the point where the antioxidant defense mechanism is overwhelmed, the result can be oxidative stress, which is associated with numerous diseases such as cancer of arthritis.

The aggressive molecules are normally controlled by endogenous antioxidants. Within this process, organelles located inside the cell, so-called peroxisomes, play an important part, since they assist in regulating the concentration of free oxygen radicals.

Nanocapsules Transform Radicals into Water and Oxygen

Prof. Cornelia Palivan and her research group at the University of Basel have successfully produced artificial peroxisomes that mimic the natural organelle. The researchers developed a cell organelle based on polymeric nanocapsules, in which two types of enzymes are encapsulated. These enzymes are able to transform free oxygen radicals into water and oxygen.

In order to verify the functionality inside the cell, channel proteins were added to the artificial peroxisome's membrane, to serve as gates for substrates and products. The results show that the artificial peroxisomes are incorporated into the cell, where they then very efficiently support the natural peroxisomes in the detoxification process.

Novel Drugs

This type of effective principle targets the cell dysfunction directly on the cellular level, thus representing a further step towards the development of novel drugs that will make patient-oriented and personalized treatments possible in the future.


Story Source:

The above story is based on materials provided by Universität Basel. Note: Materials may be edited for content and length.


Journal Reference:

  1. Pascal Tanner, Vimalkumar Balasubramanian, Cornelia G. Palivan. Aiding Nature’s Organelles: Artificial Peroxisomes Play Their Role. Nano Letters, 2013; 13 (6): 2875 DOI: 10.1021/nl401215n

Cite This Page:

Universität Basel. "Artificial organelles transform free radicals into water and oxygen." ScienceDaily. ScienceDaily, 16 July 2013. <www.sciencedaily.com/releases/2013/07/130716075840.htm>.
Universität Basel. (2013, July 16). Artificial organelles transform free radicals into water and oxygen. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/07/130716075840.htm
Universität Basel. "Artificial organelles transform free radicals into water and oxygen." ScienceDaily. www.sciencedaily.com/releases/2013/07/130716075840.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins