Featured Research

from universities, journals, and other organizations

Discovery of a new class of white blood cells uncovers target for better vaccine design

Date:
July 17, 2013
Source:
Agency for Science, Technology and Research (A*STAR), Singapore
Summary:
Scientists have discovered a new class of white blood cells in human lung and gut tissues that play a critical role as the first line of defense against harmful fungal and bacterial infections. This research will have significant impact on the design of vaccines and targeted immunotherapies for diseases caused by infectious microbes such as the hospital-acquired pneumonia.

Fluorescence microscopy reveals the newly discovered CD11b+ dendritic cells (green) amongst other white blood cells (orange and red) in the lung tissue.
Credit: Image by Peter See, A*STAR SIgN

Scientists at A*STAR's Singapore Immunology Network (SIgN) have discovered a new class of white blood cells in human lung and gut tissues that play a critical role as the first line of defence against harmful fungal and bacterial infections. This research will have significant impact on the design of vaccines and targeted immunotherapies for diseases caused by infectious microbes such as the hospital-acquired pneumonia.

Related Articles


The scientists also showed for the first time that key immune functions of this new class of white blood cells are similar to those found in mice. This means that findings in the mouse studies can be applied to develop advanced clinical therapies for the human immune system. The study done in collaboration with Newcastle University was published in the journal Immunity.

New Class of White Blood Cells

All immune responses against infectious agents are activated and regulated by dendritic cells (DCs), a specialised group of white blood cells which present tiny fragments from micro-organisms, vaccines or tumours to the T cells. T cells are immune cells that circulate around our bodies to scan for cellular abnormalities and infections. Of the different T cells, T helper 17 (Th17) cells specialise in activating a protective response crucial for our body to eliminate harmful bacteria or fungi.

In this study, the scientists identified a new subset of DCs (named CD11b+ DCs), which are capable of activating such protective Th17 response. They also showed that mice lacking the CD11b+ DCs were unable to induce the protective Th17 response against the Aspergillus fumigatus, one of the most common fungal species in hospital-acquired infections.

The team leader, Dr Florent Ginhoux from SIgN said, "As dendritic cells have the unique ability to 'sense' the type of pathogen present in order to activate the appropriate immune response, they are attractive targets to explore for vaccine development. This discovery revealed fresh inroads to better exploit dendritic cells for improved vaccine design against life-threatening fungal infections."

Acting Executive Director of SIgN, Associate Professor Laurent Rénia said, "Life-threatening fungal infections have increased over the years yet treatment options remain limited. This study demonstrates how fundamental research that deepens our understanding of the body's immune system can translate into potential clinical applications that could save lives and impact healthcare."


Story Source:

The above story is based on materials provided by Agency for Science, Technology and Research (A*STAR), Singapore. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andreas Schlitzer, Naomi McGovern, Pearline Teo, Teresa Zelante, Koji Atarashi, Donovan Low, Adrian W.S. Ho, Peter See, Amanda Shin, Pavandip Singh Wasan, Guillaume Hoeffel, Benoit Malleret, Alexander Heiseke, Samantha Chew, Laura Jardine, Harriet A. Purvis, Catharien M.U. Hilkens, John Tam, Michael Poidinger, E. Richard Stanley, Anne B. Krug, Laurent Renia, Baalasubramanian Sivasankar, Lai Guan Ng, Matthew Collin, Paola Ricciardi-Castagnoli, Kenya Honda, Muzlifah Haniffa, Florent Ginhoux. IRF4 Transcription Factor-Dependent CD11b Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses. Immunity, 2013; 38 (5): 970 DOI: 10.1016/j.immuni.2013.04.011

Cite This Page:

Agency for Science, Technology and Research (A*STAR), Singapore. "Discovery of a new class of white blood cells uncovers target for better vaccine design." ScienceDaily. ScienceDaily, 17 July 2013. <www.sciencedaily.com/releases/2013/07/130717095528.htm>.
Agency for Science, Technology and Research (A*STAR), Singapore. (2013, July 17). Discovery of a new class of white blood cells uncovers target for better vaccine design. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2013/07/130717095528.htm
Agency for Science, Technology and Research (A*STAR), Singapore. "Discovery of a new class of white blood cells uncovers target for better vaccine design." ScienceDaily. www.sciencedaily.com/releases/2013/07/130717095528.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins