Featured Research

from universities, journals, and other organizations

Protein responsible for 'bad' blood vessel growth discovered

Date:
July 17, 2013
Source:
University College London
Summary:
The discovery of a protein that encourages blood vessel growth, and especially "bad" blood vessels -- the kind that characterize diseases as diverse as cancer, age-related macular degeneration and rheumatoid arthritis -- has been reported.

The discovery of a protein that encourages blood vessel growth, and especially 'bad' blood vessels – the kind that characterise diseases as diverse as cancer, age-related macular degeneration and rheumatoid arthritis – has been reported in the journal Nature.

The team at the UCL Institute of Ophthalmology discovered the new protein, called LRG1, by screening for mouse genes that are over-expressed in abnormal retinal blood vessels in diseased eyes.

In these diseased retinas the LRG1 protein is expressed by blood vessel endothelial cells, which line blood vessel walls. LRG1 is also present in the eyes of patients with proliferative diabetic retinopathy – a vascular complication of diabetes that can lead to blindness.

The study shows that, in mouse models, LRG1 promotes the growth of blood vessels in a process known as 'angiogenesis'. Conversely, inhibition of LRG1 in mouse models reduces the harmful blood vessel growth associated with retinal disease.

The authors of the study suggest that blocking LRG1's activity is a promising target for future therapy.

Professor John Greenwood, senior author of the research from the UCL Institute of Ophthalmology said: "We have discovered that a secreted protein, LRG1, promotes new blood vessel growth and its inhibition prevents pathological blood vessel growth in ocular disease.

"Our findings suggest that LRG1 has less of a role in normal blood vessel growth and so may be particularly applicable to 'bad' blood vessel growth. This makes LRG1 an especially attractive target for therapeutic intervention in conditions where vessel growth contributes to disease."

Angiogenesis is an essential biological process that is required for development, reproduction and the repair of damaged tissues. However angiogenesis also plays a major role in many diseases where new vessel growth can be harmful.

For example, in the retina uncontrolled and irregular blood vessel growth in diseases such as age-related macular degeneration and diabetic retinopathy can result in a catastrophic loss of vision. Another example is the growth of cancerous solid tumours, which are dependent on the proliferation of new blood vessels. Angiogenesis is also an important feature of rheumatoid arthritis, where it contributes to the inflammation of the joint.

In previous studies, many signaling molecules have been identified that control angiogenesis, with the secreted protein vascular endothelial growth factor (VEGF) being considered as the master regulator. Therapeutic targeting of VEGF has resulted in improved outcomes in eye diseases with vascular complications and in some cancers but it is clear that additional therapeutic targets need to be identified.

The mechanism through which LRG1 promotes angiogenesis is by modifying the signalling of a multifunctional secreted growth factor called transforming growth factor beta (TGF-beta). TGF-beta regulates both the maintenance of normal healthy blood vessels, and the unwanted growth of harmful blood vessels, but precisely how it promotes two opposing outcomes is a biological paradox.

This study indicates that in the retinal diseases investigated LRG1 production is 'turned on' in blood vessels. This causes a switch in TGF-beta signalling away from a normal vessel maintenance pathway towards a pathway that promotes the growth of new harmful blood vessels.

Professor Stephen Moss, senior author from the UCL Institute of Ophthalmology said: "Genetic studies have revealed that the gene that codes for LRG1 is conserved in vertebrates, and this study confirms that mouse and human blood vessels express LRG1.

"We predict, therefore, that abnormal blood vessel growth is also a conserved process and that the role of LRG1 is equally applicable to human pathological angiogenesis."

He added: "Work is already underway to develop a therapeutic antibody that targets LRG1."


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiaomeng Wang, Sabu Abraham, Jenny A. G. McKenzie, Natasha Jeffs, Matthew Swire, Vineeta B. Tripathi, Ulrich F. O. Luhmann, Clemens A. K. Lange, Zhenhua Zhai, Helen M. Arthur, James W. B. Bainbridge, Stephen E. Moss, John Greenwood. LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature, 2013; 499 (7458): 306 DOI: 10.1038/nature12345

Cite This Page:

University College London. "Protein responsible for 'bad' blood vessel growth discovered." ScienceDaily. ScienceDaily, 17 July 2013. <www.sciencedaily.com/releases/2013/07/130717132328.htm>.
University College London. (2013, July 17). Protein responsible for 'bad' blood vessel growth discovered. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/07/130717132328.htm
University College London. "Protein responsible for 'bad' blood vessel growth discovered." ScienceDaily. www.sciencedaily.com/releases/2013/07/130717132328.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Nigeria Ups Ebola Stakes on 1st Death

Nigeria Ups Ebola Stakes on 1st Death

Reuters - Business Video Online (July 29, 2014) Nigerian authorities have shut and quarantined a Lagos hospital where a Liberian man died of the Ebola virus, the first recorded case of the highly-infectious disease in Africa's most populous economy. David Pollard reports Video provided by Reuters
Powered by NewsLook.com
Running 5 Minutes A Day Might Add Years To Your Life

Running 5 Minutes A Day Might Add Years To Your Life

Newsy (July 29, 2014) According to a new study, just five minutes of running or jogging a day could add years to your life. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Poses Little Threat To U.S.: CDC

Ebola Outbreak Poses Little Threat To U.S.: CDC

Newsy (July 29, 2014) The Ebola outbreak in West Africa poses little threat to Americans, according to officials with the Centers for Disease Control and Prevention. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins