Featured Research

from universities, journals, and other organizations

When cells are consumed by wanderlust

Date:
July 22, 2013
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
Whether in fish embryos or human tumors, the same gene controls how cells migrate in cell tissue. In experiments on zebrafish, researchers have demonstrated that the same proteins that lead to the formation of metastases in humans also cause the cells to migrate during embryonic development.

Groups of red and green labelled embryonic cells in a zebrafish during their first migration in gastrulation.
Credit: © Wolfgang Driever

Whether in fish embryos or human tumors, the same gene controls how cells migrate in cell tissue.

Related Articles


In experiments on zebrafish, Freiburg researchers have demonstrated that the same proteins that lead to the formation of metastases in humans also cause the cells to migrate during embryonic development. The study was conducted by a team headed by Prof. Dr. Wolfgang Driever and Prof. Dr. Thomas Brabletz and including researchers from the Department of Developmental Biology, the Department of Visceral Surgery at the University Medical Center, and the Cluster of Excellence BIOSS Centre for Biological Signalling Studies. The scientists hope their findings on cell migration in zebrafish will open up new perspectives for research on proteins that control metastasis and thus the malignancy of cancer.

Cells are usually firmly connected to one another in their tissues. In order to move through the tissue, they must break away and modify their contacts with other cells, which are made by way of binding proteins. This happens particularly often during the stage of embryonic development, but it can also occur in tumors when they form metastases. In cancer cells, the protein networks that control the behavior are changed in such a way as to cause the cells to lose control and break away -- a mutated skin cell, for instance, might then migrate into the bloodstream. This behavior has long been described, but there are still many open questions on the control mechanisms regulating this migration. In the Journal of Biological Chemistry, the scientists demonstrate that the protein ZEB1 plays a particularly important role: It limits the production of the binding proteins E-cadherin and Epcam -- both in the fish embryo and in the tumor cell. The less E-cadherin and Epcam are produced, the looser the bonds to other cells become.

The cell migrations are particularly easy to observe in the zebrafish, because the embryo is transparent. The phase of gastrulation, in which the germ layers form through invagination of the outermost cell layer, is the first great cell migration phase in the development of vertebrates. The cells migrate from the surface of the embryo to their target position inside of the organism. The zebrafish has two genes resembling the ZEB1 gene that are involved in gastrulation: zeb1a and zeb1b. The researchers switched these genes on and off and followed the development of the modified fish embryos under the microscope in order to determine the function of the protein ZEB1.

Their observations show that embryos that possess too much or too little of the protein ZEB1 do not develop normally because they cannot execute the gastrulation movements correctly. ZEB1 checks the formation of the binding proteins E-cadherin and Epcam, enabling cells to leave their cell networks -- exactly like tumor cells during metastasis in humans. The findings of the project also reveal how the same mechanisms of cell migration remain intact in the course of evolution, making it possible to draw comparisons between fish and humans.


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Vannier, K. Mock, T. Brabletz, W. Driever. Zeb1 Regulates E-cadherin and Epcam (Epithelial Cell Adhesion Molecule) Expression to Control Cell Behavior in Early Zebrafish Development. Journal of Biological Chemistry, 2013; 288 (26): 18643 DOI: 10.1074/jbc.M113.467787

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "When cells are consumed by wanderlust." ScienceDaily. ScienceDaily, 22 July 2013. <www.sciencedaily.com/releases/2013/07/130722071940.htm>.
Albert-Ludwigs-Universität Freiburg. (2013, July 22). When cells are consumed by wanderlust. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/07/130722071940.htm
Albert-Ludwigs-Universität Freiburg. "When cells are consumed by wanderlust." ScienceDaily. www.sciencedaily.com/releases/2013/07/130722071940.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) — Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins