Featured Research

from universities, journals, and other organizations

The ferromagnetic Kondo effect: A circuit simulates an effect predicted by physicists but never actually observed

Date:
July 24, 2013
Source:
Sissa Medialab
Summary:
A group of physicists has shown how to obtain a particular case of a physical effect -- so far never observed in reality -- whose studies have earned a Nobel Prize. The scientists have also observed the response of the material subject to such effect. These observations will provide precious indications to the experimental physicists in order to verify, in the future, their theory.

A group of physicists that includes scientists of the International School for Advanced Studies (SISSA) of Trieste has shown how to obtain a particular case of a physical effect -- so far never observed in reality -- whose studies have earned a Nobel Prize. The scientists have also observed the response of the material subject to such effect. These observations will provide precious indications to the experimental physicists in order to verify, in the future, their theory.

The Kondo effect in 1982 earned the Nobel Prize in Physics to Kenneth Wilson -- the American physicist who passed away this year -- who had solved numerically such solid-state physics "problem." Now a group of scientists, including some researchers of the International School for Advanced Studies (SISSA) of Trieste have explored a lesser known variant, predicting theoretically that the phenomenon can be actually observed, and describing its behavior in detail.

The Kondo effect, described for the first time in the last century by Japanese physicist Jun Kondo, is observed when a magnetic impurity is added to metals such as gold or copper, that is, very few atoms (in some cases even only 1 out of 1,000) of a magnetic material such as iron.

"Each electron features a moment, both of rotation and magnetic, called spin. Kondo is a phenomenon linked to the spin of metal electrons," explains Erio Tosatti, a scientist of SISSA and one of the authors of the paper just published in Physical Review Letters. "The free metal electrons surround the impurity like a cloud and arrange themselves into a spin that screens out the impurity, to a point that it is not detectable any longer, at least as long the temperature is sufficiently low. This affects selected properties of the materials, such as an increase in resistivity and in the resistance to the flow of electrons in the metal. "

More in detail…

Tosatti, who also collaborates with ICTP and Laboratorio Nazionale Democritos of Istituto CNR-IOM, has joined forces with Michele Fabrizio and Ryan Requist of SISSA, and Paolo Baruselli, a former student of SISSA now at Dresden University of Technology. The team has studied a particular case, that is, the "ferromagnetic Kondo effect." In this case the metal electrons will align their spins in a way that does not screen out those of the electrons of the iron atoms, but instead "anti-screens" them, preserving their magnetism. Compared to the traditional Kondo effect, this will change the resistivity properties of the material. Tosatti and his colleagues have now proposed and described a circuit, made up of three quantum dots ("puddles" of electrons trapped inside a semiconductor), where, by simply adjusting a parameter, both the ferromagnetic and the ordinary Kondo effects may be observed, distinguished by their different and opposed electrical conduction anomalies .

Now the phenomenon has to be verified. "We expect" concludes Tosatti, "that our experimental colleagues will now try to reproduce the same conditions we have indicated in order to carry out what could be the first observation of a phenomenon that has been theorized for a long time but never verified so far."


Story Source:

The above story is based on materials provided by Sissa Medialab. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. P. Baruselli, R. Requist, M. Fabrizio, E. Tosatti. Ferromagnetic Kondo Effect in a Triple Quantum Dot System. Physical Review Letters, 2013; 111 (4) DOI: 10.1103/PhysRevLett.111.047201

Cite This Page:

Sissa Medialab. "The ferromagnetic Kondo effect: A circuit simulates an effect predicted by physicists but never actually observed." ScienceDaily. ScienceDaily, 24 July 2013. <www.sciencedaily.com/releases/2013/07/130724102724.htm>.
Sissa Medialab. (2013, July 24). The ferromagnetic Kondo effect: A circuit simulates an effect predicted by physicists but never actually observed. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2013/07/130724102724.htm
Sissa Medialab. "The ferromagnetic Kondo effect: A circuit simulates an effect predicted by physicists but never actually observed." ScienceDaily. www.sciencedaily.com/releases/2013/07/130724102724.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins