Featured Research

from universities, journals, and other organizations

Atmospheric rivers set to increase UK winter flooding

Date:
July 24, 2013
Source:
Institute of Physics (IOP)
Summary:
The prolonged heat wave that has bathed the UK in sunshine over the past month has given the country an unexpected taste of summer that has seemed to be missing in recent years. However, a new study has provided warnings that will chime with those accustomed to more typical British weather. According to the study, winter flooding in the UK is set to get more severe and more frequent under the influence of climate change as a result of a change in the characteristics of atmospheric rivers.

Flood in UK, river Thames in Reading.
Credit: © Elena Moiseeva / Fotolia

The prolonged heat wave that has bathed the UK in sunshine over the past month has given the country an unexpected taste of summer that has seemed to be missing in recent years.

However, a new study published today, 24 July, in IOP Publishing's Environmental Research Letters, has provided warnings that will chime with those accustomed to more typical British weather.

According to the study, winter flooding in the UK is set to get more severe and more frequent under the influence of climate change as a result of a change in the characteristics of atmospheric rivers (ARs).

ARs are narrow regions of intense moisture flows in the lower troposphere of the atmosphere that deliver sustained and heavy rainfall to mid-latitude regions such as the UK.

They are responsible for many of the largest winter floods in the mid-latitudes and can carry extremely large amounts of water: the AR responsible for flooding in the northwest of the UK in 2009 transported 4500 times more water than the average flow in the River Thames in London.

The researchers, from the University of Reading and University of Iowa, found that large parts of the projected changes in AR frequency and intensity would be down to thermodynamic changes in the atmosphere, rather than the natural variability of the climate, suggesting that it is a response to anthropogenic climate change.

To reach these conclusions, the researchers used simulations from five state-of-the-art climate models to investigate how the characteristics of ARs may change under future climate change scenarios.

Firstly, they used the climate models to see how accurately they could simulate the ARs that occurred between 1980 and 2005. The five models did this successfully and were deemed capable of projecting how future ARs will develop under different scenarios.

The models were then used to simulate future conditions under two scenarios -- RCP4.5 and RCP8.5 -- that represent different, yet equally plausible, scenarios for future increases in greenhouse gas concentrations in the atmosphere. They projected changes that would occur between 2074 and 2099.

Each of the five models simulated an increase in AR frequency. For the RCP8.5 projections, which represents stronger increases in greenhouse gas concentrations than RCP4.5, there was a striking level of consistency in the magnitude of change in AR frequency -- all models showed an approximate doubling of the number of future ARs compared to the simulations for 1980 -- 2005.

The models also projected an increase in intensity of the ARs, meaning an AR impacting the UK in the future is projected to deliver more moisture, potentially causing larger precipitation totals.

Lead author of the research, Dr David Lavers, said: "ARs could become stronger in terms of their moisture transport. In a warming world, atmospheric water vapour content is expected to rise due to an increase in saturation water vapour pressure with air temperature. This is likely to result in increased water vapour transport.

"The link between ARs and flooding is already well established, so an increase in AR frequency is likely to lead an increased number of heavy winter rainfall events and floods. More intense ARs are likely to lead to higher rainfall totals, and thus larger flood events."


Story Source:

The above story is based on materials provided by Institute of Physics (IOP). Note: Materials may be edited for content and length.


Journal Reference:

  1. David A Lavers, Richard P Allan, Gabriele Villarini, Benjamin Lloyd-Hughes, David J Brayshaw, Andrew J Wade. Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environmental Research Letters, 2013; 8 (3): 034010 DOI: 10.1088/1748-9326/8/3/034010

Cite This Page:

Institute of Physics (IOP). "Atmospheric rivers set to increase UK winter flooding." ScienceDaily. ScienceDaily, 24 July 2013. <www.sciencedaily.com/releases/2013/07/130724102734.htm>.
Institute of Physics (IOP). (2013, July 24). Atmospheric rivers set to increase UK winter flooding. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/07/130724102734.htm
Institute of Physics (IOP). "Atmospheric rivers set to increase UK winter flooding." ScienceDaily. www.sciencedaily.com/releases/2013/07/130724102734.htm (accessed July 29, 2014).

Share This




More Earth & Climate News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions According To White House

Climate Change Could Cost Billions According To White House

Newsy (July 29, 2014) — A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) — Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
$50bn Yukos Case Latest Russia Cost

$50bn Yukos Case Latest Russia Cost

Reuters - Business Video Online (July 28, 2014) — A Hague court has ordered Russia to pay $50 billion to a group of shareholders in defunct oil giant Yukos for expropriating its assets. Russian Foreign Minister Lavrov says Moscow will most likely appeal. As Joel Flynn reports, the ruling hits Russia as it's facing more international sanctions about its role in Ukraine. Video provided by Reuters
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) — The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins