Featured Research

from universities, journals, and other organizations

New way to create 'gradients' for understanding molecular interactions

Date:
July 26, 2013
Source:
North Carolina State University
Summary:
Scientists use tools called gradients to understand how molecules interact in biological systems. Researchers have developed a new technique for creating biomolecular gradients that is both simpler than existing techniques and that creates additional surface characteristics that allow scientists to monitor other aspects of molecular behavior.

The new technique begins with a substrate made of indium gallium nitride. Negatively-charged oxides form on the surface, which then bind to the amino acid L-arginine.
Credit: Lauren Bain

Scientists use tools called gradients to understand how molecules interact in biological systems. Researchers from North Carolina State University have developed a new technique for creating biomolecular gradients that is both simpler than existing techniques and that creates additional surface characteristics that allow scientists to monitor other aspects of molecular behavior.

Related Articles


A gradient is a material that has a specific molecule on its surface, with the concentration of the molecule sloping from a high concentration on one end to a low concentration at the other end. The gradient is used not only to determine whether other molecules interact with the molecules on the gradient, but to determine the threshold level at which any interactions take place.

The new technique begins by creating a substrate, prepared in the lab of NC State professor Dr. Salah Bedair, out of the semiconductor material indium gallium nitride (InGaN). The substrate itself is a gradient, sloping from an indium-rich end (with a larger proportion of indium to gallium) to a gallium-rich end. The indium-rich end is more conducive to the formation of oxides. When exposed to humidity, negatively charged indium and gallium oxides form on the surface of the substrate. The substrate development for these purposes was proposed by Dr. Tania Paskova, a professor of electrical and computer engineering at NC State.

The researchers then put the substrate into a solution that contains an amino acid called L-arginine, which is positively charged at biologically relevant pH levels -- such as those found in the human body.

"The L-arginine binds to the negatively charged oxides on the surface of the substrate," says Lauren Bain, a Ph.D. student at NC State who is lead author of a paper on the work. "Because there is more oxide accumulation at the indium-rich end, there is a higher concentration of L-arginine at that end, and the concentration gradually declines along the surface of the substrate as you move toward the gallium-rich end.

"We studied L-arginine because it is small, but relevant. Because it is small, we could easily assess what was happening during our study," Bain says. "But because it is a building block for proteins, we can build on this work to study full peptides and proteins -- such as ligands that bind to cell receptors."

"This technique also creates changes in the topography of the InGaN's surface, based on the different crystalline structures within the material as its shifts from being indium-rich to being gallium-rich," says Dr. Albena Ivanisevic, senior author of the paper. "This allows us to assess topographical differences in molecular adhesion, which is important, given the variety of topographies found in biological systems." Ivanisevic is an associate professor of materials science and engineering at NC State and associate professor of the joint biomedical engineering program at NC State and the University of North Carolina at Chapel Hill.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lauren E Bain, Scott A Jewett, Aadhithya Hosalli Mukund, Salah M Bedair, Tania M Paskova, Albena Ivanisevic. Biomolecular Gradients via Semiconductor Gradients: Characterization of Amino Acid Adsorption to InxGa1–xN Surfaces. ACS Applied Materials & Interfaces, 2013; 130723152540006 DOI: 10.1021/am4015555

Cite This Page:

North Carolina State University. "New way to create 'gradients' for understanding molecular interactions." ScienceDaily. ScienceDaily, 26 July 2013. <www.sciencedaily.com/releases/2013/07/130726103353.htm>.
North Carolina State University. (2013, July 26). New way to create 'gradients' for understanding molecular interactions. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2013/07/130726103353.htm
North Carolina State University. "New way to create 'gradients' for understanding molecular interactions." ScienceDaily. www.sciencedaily.com/releases/2013/07/130726103353.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins