Featured Research

from universities, journals, and other organizations

Seemingly competitive co-catalysts cooperate to accelerate chemical reaction

Date:
July 29, 2013
Source:
Boston College
Summary:
Chemists report that a new and counterintuitive strategy, inspired by computational studies, opened the door to the development of a substantially more efficient chemical reaction from a highly valued catalyst their team has been developing since 2006.

A new, computationally-inspired approach has led a team of Boston College chemists to re-conceptualize a highly valued catalytic process, dramatically increasing the efficiency of a chemical transformation that selectively produces chiral, or handed, molecules valued for medical and life sciences research, the team reports in the current online edition of the journal Nature Chemistry.

The new approach allows for reducing the reaction time to less than an hour, down from a period of two to five days, the team reports. That gain was accompanied by a similarly dramatic reduction in catalyst loading, producing a cleaner and more efficient reaction via a procedure known as enantioselective alcohol silylation.

Based on a computational projection, the team employed the high-risk approach of using co-catalysts to achieve marked gains in the reaction. Co-catalysts conflict because of their overlapping properties and functions, making it difficult to control the intended reaction. In this case, the seemingly competitive co-catalysts work in concert.

"The use of co-catalysts can be tricky, especially in procedures intended to deliver handedness in the molecules you want your reaction to produce," said one of the lead authors, Amir Hoveyda, the Joseph T. and Patricia Vanderslice Millennium Professor of Chemistry at Boston College. "What we've shown is that in this procedure you can take two co-catalysts, which on the surface are competing with one another, and effectively keep them from interfering with one another."

Hoveyda and Professor of Chemistry Marc Snapper, the other lead author, have worked since 2006 on this method of catalysis. These catalysts, originally developed in their laboratories seven years ago, are valued for producing reactions that offer a high level of enantioselective purity -- the synthesis of mirror-image, or handed isomers -- which are crucial building blocks for biological and medical research.

But a relatively slow reaction time of two to five days had stymied the scientists since reporting an earlier breakthrough in 2006, the latest advance in a research partnership that extends nearly two decades. But the addition of computational chemist Fredrik Haeffner to the team two years ago led to new models and insights into how to further refine the procedure, Hoveyda said.

"We could never have done this without the power of computational chemistry that Fredrik brings to the team," said Hoveyda. Haeffner is a senior research associate in the Hoveyda group in the Chemistry Department at Boston College and a former scientist at the National Institutes of Standards and Technology.

Based on Haeffner's calculations, the research team, which included BC graduate students Nathan Manville and Hekla Alite, employed the co-catalyst model involving two Lewis base molecules -- adding an achiral molecule to an already present chiral molecule. These Lewis bases, discovered nearly 100 years ago, are seemingly competitive as they both seek to shed a pair of electrons to a receptive Lewis acid. Remarkably, however, rather than compete, these co-catalysts operate in concert, with the chiral molecule activating alcohol and the additional achiral molecule -- from commercially available 5-ethylthiotetrazole -- activating silicon.

Identification of the positive influence of ethylthiotetrazole proved to be the key component of the discovery, giving the team the ability to fine-tune the reaction and effectively control the interplay between the co-catalysts. Together, the Lewis bases served as a closely related Bronsted base -- an entity that absorbs a proton -- to allow the catalyst to work faster yet retain high enantioselectivity.

"The bottom line is the reaction goes a lot faster," said Snapper. "The practical advance is adding the tetrazole, which greatly accelerated the pace of the reaction by doing a much better job activating the silicon reaction partner."

The authors suggest that the new conceptualization of the catalyst could lead to the development of new processes that require separate and independently operational Lewis basic co-catalysts. The findings indicate the new strategy can overcome the overlapping functions of the co-catalysts and eliminate detrimental effects on the production of new molecules with high enantioselectivity.


Story Source:

The above story is based on materials provided by Boston College. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nathan Manville, Hekla Alite, Fredrik Haeffner, Amir H. Hoveyda, Marc L. Snapper. Enantioselective silyl protection of alcohols promoted by a combination of chiral and achiral Lewis basic catalysts. Nature Chemistry, 2013; DOI: 10.1038/nchem.1708

Cite This Page:

Boston College. "Seemingly competitive co-catalysts cooperate to accelerate chemical reaction." ScienceDaily. ScienceDaily, 29 July 2013. <www.sciencedaily.com/releases/2013/07/130729111936.htm>.
Boston College. (2013, July 29). Seemingly competitive co-catalysts cooperate to accelerate chemical reaction. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/07/130729111936.htm
Boston College. "Seemingly competitive co-catalysts cooperate to accelerate chemical reaction." ScienceDaily. www.sciencedaily.com/releases/2013/07/130729111936.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins