Featured Research

from universities, journals, and other organizations

Seemingly competitive co-catalysts cooperate to accelerate chemical reaction

Date:
July 29, 2013
Source:
Boston College
Summary:
Chemists report that a new and counterintuitive strategy, inspired by computational studies, opened the door to the development of a substantially more efficient chemical reaction from a highly valued catalyst their team has been developing since 2006.

A new, computationally-inspired approach has led a team of Boston College chemists to re-conceptualize a highly valued catalytic process, dramatically increasing the efficiency of a chemical transformation that selectively produces chiral, or handed, molecules valued for medical and life sciences research, the team reports in the current online edition of the journal Nature Chemistry.

Related Articles


The new approach allows for reducing the reaction time to less than an hour, down from a period of two to five days, the team reports. That gain was accompanied by a similarly dramatic reduction in catalyst loading, producing a cleaner and more efficient reaction via a procedure known as enantioselective alcohol silylation.

Based on a computational projection, the team employed the high-risk approach of using co-catalysts to achieve marked gains in the reaction. Co-catalysts conflict because of their overlapping properties and functions, making it difficult to control the intended reaction. In this case, the seemingly competitive co-catalysts work in concert.

"The use of co-catalysts can be tricky, especially in procedures intended to deliver handedness in the molecules you want your reaction to produce," said one of the lead authors, Amir Hoveyda, the Joseph T. and Patricia Vanderslice Millennium Professor of Chemistry at Boston College. "What we've shown is that in this procedure you can take two co-catalysts, which on the surface are competing with one another, and effectively keep them from interfering with one another."

Hoveyda and Professor of Chemistry Marc Snapper, the other lead author, have worked since 2006 on this method of catalysis. These catalysts, originally developed in their laboratories seven years ago, are valued for producing reactions that offer a high level of enantioselective purity -- the synthesis of mirror-image, or handed isomers -- which are crucial building blocks for biological and medical research.

But a relatively slow reaction time of two to five days had stymied the scientists since reporting an earlier breakthrough in 2006, the latest advance in a research partnership that extends nearly two decades. But the addition of computational chemist Fredrik Haeffner to the team two years ago led to new models and insights into how to further refine the procedure, Hoveyda said.

"We could never have done this without the power of computational chemistry that Fredrik brings to the team," said Hoveyda. Haeffner is a senior research associate in the Hoveyda group in the Chemistry Department at Boston College and a former scientist at the National Institutes of Standards and Technology.

Based on Haeffner's calculations, the research team, which included BC graduate students Nathan Manville and Hekla Alite, employed the co-catalyst model involving two Lewis base molecules -- adding an achiral molecule to an already present chiral molecule. These Lewis bases, discovered nearly 100 years ago, are seemingly competitive as they both seek to shed a pair of electrons to a receptive Lewis acid. Remarkably, however, rather than compete, these co-catalysts operate in concert, with the chiral molecule activating alcohol and the additional achiral molecule -- from commercially available 5-ethylthiotetrazole -- activating silicon.

Identification of the positive influence of ethylthiotetrazole proved to be the key component of the discovery, giving the team the ability to fine-tune the reaction and effectively control the interplay between the co-catalysts. Together, the Lewis bases served as a closely related Bronsted base -- an entity that absorbs a proton -- to allow the catalyst to work faster yet retain high enantioselectivity.

"The bottom line is the reaction goes a lot faster," said Snapper. "The practical advance is adding the tetrazole, which greatly accelerated the pace of the reaction by doing a much better job activating the silicon reaction partner."

The authors suggest that the new conceptualization of the catalyst could lead to the development of new processes that require separate and independently operational Lewis basic co-catalysts. The findings indicate the new strategy can overcome the overlapping functions of the co-catalysts and eliminate detrimental effects on the production of new molecules with high enantioselectivity.


Story Source:

The above story is based on materials provided by Boston College. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nathan Manville, Hekla Alite, Fredrik Haeffner, Amir H. Hoveyda, Marc L. Snapper. Enantioselective silyl protection of alcohols promoted by a combination of chiral and achiral Lewis basic catalysts. Nature Chemistry, 2013; DOI: 10.1038/nchem.1708

Cite This Page:

Boston College. "Seemingly competitive co-catalysts cooperate to accelerate chemical reaction." ScienceDaily. ScienceDaily, 29 July 2013. <www.sciencedaily.com/releases/2013/07/130729111936.htm>.
Boston College. (2013, July 29). Seemingly competitive co-catalysts cooperate to accelerate chemical reaction. ScienceDaily. Retrieved April 22, 2015 from www.sciencedaily.com/releases/2013/07/130729111936.htm
Boston College. "Seemingly competitive co-catalysts cooperate to accelerate chemical reaction." ScienceDaily. www.sciencedaily.com/releases/2013/07/130729111936.htm (accessed April 22, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, April 22, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Maine Storm Surge Sparks Power Explosions

Raw: Maine Storm Surge Sparks Power Explosions

AP (Apr. 21, 2015) Police dash cam video shows a series of explosions along the beach in Maine as heavy storm surge soaked electrical transformers. (April 21) Video provided by AP
Powered by NewsLook.com
Japan's Maglev Train Breaks New World Speed Record

Japan's Maglev Train Breaks New World Speed Record

AFP (Apr. 21, 2015) Japan&apos;s state-of-the-art maglev train clocks a new world speed record in a test run near Mount Fuji, smashing through the 600 kilometre (373 miles) per hour mark, as Tokyo races to sell the technology abroad. Video provided by AFP
Powered by NewsLook.com
Free Home Heating Offered by E-Radiators

Free Home Heating Offered by E-Radiators

Reuters - Innovations Video Online (Apr. 21, 2015) A revolutionary new radiator design offers Dutch home-owners the chance to get free heating. The e-Radiator is a computer server modified so that the heat it generates can warm a room inside a house. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Solar Plane Completes 6th Leg of Quest to Circumnavigate Globe

Solar Plane Completes 6th Leg of Quest to Circumnavigate Globe

AFP (Apr. 21, 2015) Solar Impulse 2 lands in the Chinese city of Nanjing, finishing the sixth stage of its landmark 12-leg quest to circumnavigate the globe powered only by the sun. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins