Featured Research

from universities, journals, and other organizations

Early exposure to insecticides gives amphibians higher tolerance later

Date:
July 29, 2013
Source:
University of Pittsburgh
Summary:
Amphibians exposed to insecticides early in life -- even those not yet hatched -- have a higher tolerance to those same insecticides later in life, according to a recent study.

Amphibians exposed to insecticides early in life -- even those not yet hatched -- have a higher tolerance to those same insecticides later in life, according to a recent University of Pittsburgh study.

Related Articles


Published in Evolutionary Applications, the Pitt study found that wood frog populations residing farther from agricultural fields are not very tolerant to a particular type of insecticide, but they can become more tolerant with early exposure.

"This is the first study to show that tadpole tolerance to insecticides can be influenced by exposure to insecticides extremely early on in life -- in this case, as early as the embryonic stage," said study principal investigator Rick Relyea, Pitt professor of biological sciences within the Kenneth P. Dietrich School of Arts and Sciences and director of the University's Pymatuning Laboratory of Ecology.

"Amphibian populations are declining worldwide, and pesticides and insecticides are one hypothesized cause," said Jessica Hua, lead author of the paper and a PhD candidate studying biological sciences in Relyea's laboratory. "So this discovery has promising implications for the persistence of amphibian populations."

The Pitt team -- which also included Nathan Morehouse, Pitt assistant professor of biological sciences -- examined three potential factors that might allow larval wood frogs to have a high tolerance to the insecticide: the concentration of the initial insecticide exposure, the timing of the exposure, and the population's history of exposure. They chose to work with carbaryl, a popular household insecticide that also is used for malaria prevention.

The researchers conducted experiments with both embryos and hatchlings that were collected as newly laid eggs from four Pennsylvania ponds -- two near agricultural fields and two farther away. Both embryos and hatchlings from all four environs were first exposed to a low, nonlethal concentration of the insecticide. Later, they exposed the same individuals to a lethal concentration of the insecticide at the tadpole stage and measured the tadpoles' mortality rates over the course of several weeks.

Next, the team wanted to observe whether insecticide tolerance played a role in the frogs' acetylcholinesterase (AChE), a key enzyme in the nervous system of animals. Carbaryl is known to bind itself to this AChE enzyme in frogs, causing their nervous systems to slow. The Pitt team measured the concentration of total tadpole AChE in a sample of tadpole bodies, finding that low exposure levels of carbaryl stimulated the tadpoles to produce greater amounts of the enzyme -- making them more tolerant to the insecticide later in life.

The team is now examining whether exposure to an insecticide early in life can make amphibians more tolerant to other insecticides.

"In other words, we are asking if a tolerance to one insecticide can convey cross tolerance to other insecticides that affect the nervous system similarly," said Hua.

The paper, "Pesticide Tolerance in Amphibians: Induced Tolerance in Susceptible Populations, Constitutive Tolerance in Tolerant Populations," first appeared online in Evolutionary Applications. This work was funded by a National Science Foundation grant to Relyea and grants from the University of Pittsburgh's G. Murray McKinley Research Fund and Freshwater Science Endowment Fund to Hua.


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jessica Hua, Nathan I. Morehouse, Rick Relyea. Pesticide tolerance in amphibians: induced tolerance in susceptible populations, constitutive tolerance in tolerant populations. Evolutionary Applications, 2013; DOI: 10.1111/eva.12083

Cite This Page:

University of Pittsburgh. "Early exposure to insecticides gives amphibians higher tolerance later." ScienceDaily. ScienceDaily, 29 July 2013. <www.sciencedaily.com/releases/2013/07/130729133124.htm>.
University of Pittsburgh. (2013, July 29). Early exposure to insecticides gives amphibians higher tolerance later. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2013/07/130729133124.htm
University of Pittsburgh. "Early exposure to insecticides gives amphibians higher tolerance later." ScienceDaily. www.sciencedaily.com/releases/2013/07/130729133124.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
Mysterious Glow Worms Found in the Amazon

Mysterious Glow Worms Found in the Amazon

Buzz60 (Nov. 20, 2014) Wildlife photographer Jeff Cremer teamed up with entomologist Aaron Pomerantz and others to investigate a predatory glow worm found in the Amazon. Patrick Jones (@Patrick_E_Jones) explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins