Featured Research

from universities, journals, and other organizations

Picosecond accurate slow-motion confirms oxide materials exhibit considerably faster switching properties than do semi-conductors

Date:
July 30, 2013
Source:
Helmholtz Association of German Research Centres
Summary:
Scientists have observed the switching mechanism from a non-conducting to a conducting state in iron oxide (specifically, magnetite) with previously unrealized precision. This switching mechanism -- which, in oxides, proceeds in two consecutive steps and which is thousands of times faster than it is in current transistors -- has now been described.

Optical laser flash (red) destroys the electronic order (blue) in magnetite and, within one trillionth of a second, switches the state of the material from insulating to conducting.
Credit: Greg Stewart, SLAC National Accelerator Laboratory

As part of an international team of researchers, scientists at the Helmholtz Center Berlin (HZB) have observed the switching mechanism from a non-conducting to a conducting state in iron oxide (specifically, magnetite) with previously unrealized precision. This switching mechanism -- which, in oxides, proceeds in two consecutive steps and which is thousands of times faster than it is in current transistors -- is described in the current epub-ahead-of-print issue of the scientific journal Nature Materials.

Related Articles


Materials that have the ability to switch between being good conductors and being good insulators are considered good potential candidates for electronic building blocks -- for use in transistors, for example. The iron oxide magnetite is the best known representative of this class of materials. At low temperatures, magnetite has insulating properties; at high temperatures, the oxide is a good conductor. This switching mechanism however happens so quickly that it's been impossible until now to fully grasp it on an atomic level.

Now, an international team of scientists at LCLS, the US source for ultrafast X-ray light at the SLAC National Laboratory, has managed to freeze the switching mechanism in ultraslow-motion. The researchers were able to document that the transition proceeds in two stages. "The first step involves the appearance of conducting islands within the insulating material. Thereafter, it takes less than a picosecond (that is, one trillionth of a second) before the atoms re-organize to create a complete metallic grid," explains HZB's own Christian Schüßler-Langeheine.

At BESSY II, the HZB operated electron storage ring, Schüßler-Langeheine and his team took care of the work that was necessary in preparation for the SLAC experiment. The insights gleaned from this work provided the basic framework for the SLAC experiment and for its successful realization.

The experiment, which was conducted in California, involved cooling magnetite to a temperature of minus 190 degrees. In a next step, the oxide was hit with laser light, the energy from which ended up prompting the switching mechanism. In place of a strobe light, the researchers used an X-ray laser pulse to observe the switching mechanism. Only a handful of photon sources in the World have the capabilities of performing these types of picosecond interval time-resolved measurements.

"At the HZB, we are doing research on materials for use in faster, more energy-efficient electronics," Christian Schüßler-Langeheine says. "Our experiment confirmed that the switch of an oxide material like magnetite can be incredibly fast. Oxides thus represent an exciting alternative to currently available semiconductors -- especially the kinds of materials that also show metal insulator transitions at room temperature."

The research was conducted jointly by scientists at the SLAC and Stanford University, the CFEL and Hamburg University, Amsterdam, Cologne, Potsdam, and Regensburg Universities, the Dresden-based MPI CPfS, the European Source for X-ray pulses ELETTRA in Trieste, the XFEL in Hamburg, the Advanced Light Source in Berkeley, and the Swiss Paul Scherrer Institute. The samples were prepared at Purdue University.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. de Jong, R. Kukreja, C. Trabant, N. Pontius, C. F. Chang, T. Kachel, M. Beye, F. Sorgenfrei, C. H. Back, B. Bräuer, W. F. Schlotter, J. J. Turner, O. Krupin, M. Doehler, D. Zhu, M. A. Hossain, A. O. Scherz, D. Fausti, F. Novelli, M. Esposito, W. S. Lee, Y. D. Chuang, D. H. Lu, R. G. Moore, M. Yi, M. Trigo, P. Kirchmann, L. Pathey, M. S. Golden, M. Buchholz, P. Metcalf, F. Parmigiani, W. Wurth, A. Föhlisch, C. Schüßler-Langeheine, H. A. Dürr. Speed limit of the insulator–metal transition in magnetite. Nature Materials, 2013; DOI: 10.1038/NMAT3718

Cite This Page:

Helmholtz Association of German Research Centres. "Picosecond accurate slow-motion confirms oxide materials exhibit considerably faster switching properties than do semi-conductors." ScienceDaily. ScienceDaily, 30 July 2013. <www.sciencedaily.com/releases/2013/07/130730101738.htm>.
Helmholtz Association of German Research Centres. (2013, July 30). Picosecond accurate slow-motion confirms oxide materials exhibit considerably faster switching properties than do semi-conductors. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2013/07/130730101738.htm
Helmholtz Association of German Research Centres. "Picosecond accurate slow-motion confirms oxide materials exhibit considerably faster switching properties than do semi-conductors." ScienceDaily. www.sciencedaily.com/releases/2013/07/130730101738.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) — Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) — Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) — In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) — Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Speed Limit Set for Ultrafast Electrical Switch

July 28, 2013 — Researchers have clocked the fastest-possible electrical switching in magnetite, a naturally magnetic mineral. Their results could drive innovations in the tiny transistors that control the flow of ... read more

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins