Featured Research

from universities, journals, and other organizations

Researchers target 'cell sleep' to lower chances of cancer recurrence

Date:
August 1, 2013
Source:
University of Pittsburgh Schools of the Health Sciences
Summary:
By preventing cancer cells from entering a state of cellular sleep, cancer drugs are more effective, and there is a lower chance of cancer recurrence, according to new research from an international research team. The discovery is the first to show that it is possible to therapeutically target cancer cells to keep them from entering a cellular state called quiescence, or "cell sleep."

An international research team led by University of Pittsburgh Cancer Institute (UPCI) scientists discovered that by preventing cancer cells from entering a state of cellular sleep, cancer drugs are more effective, and there is a lower chance of cancer recurrence.

The findings, which will be published in the August 15 issue of the journal Cancer Research and are available online, are the first to show that it is possible to therapeutically target cancer cells to keep them from entering a cellular state called quiescence, or "cell sleep." Quiescence can be a dangerous source of tumor recurrence because cancer drugs don't typically destroy quiescent cells.

"Successful cancer therapy often is hampered by tumor cell quiescence because these cells remain viable and are a reservoir for tumor progression," said Anette Duensing, M.D., assistant professor of pathology at UPCI. "By inhibiting a key regulator of quiescence, we are able to kill a larger fraction of cancer cells."

Dr. Duensing and her colleagues made the discovery while studying gastrointestinal stromal tumors (GISTs), which are uncommon tumors that begin in the walls of the gastrointestinal tract. According to the American Cancer Society, about 5,000 cases of GISTs occur each year in the United States with an estimated five-year survival rate of 45 percent in patients with advanced disease.

GISTs are caused by a single gene mutation, which means they can be successfully treated with the targeted therapy drug imatinib, known by the trade name Gleevec. Unlike traditional chemotherapy, which kills all rapidly dividing cells, targeted therapy stops cancer by interfering with specific molecules needed for tumor growth.

Unfortunately, GISTs rapidly develop resistance to the treatment and complete cancer remission using Gleevec is rare.

A key regulator of the cancer cell sleep process is a protein complex called DREAM, which is named for the multiple proteins involved. Gleevec induces cell sleep using the DREAM complex, which means that the drug intrinsically limits its own effectiveness.

"When we disrupted the DREAM complex in the lab, we significantly increased cancer cell death using Gleevec," said Dr. Duensing. "This underscores the importance of the DREAM complex as a novel drug target worthy of preclinical and clinical investigations."

The study is a collaboration with the Dana-Farber Cancer Institute in Boston and the Catholic University in Leuven, Belgium.

Additional co-authors of this study include Sergei Boichuk, M.D., Ph.D., Joshua A. Parry, B.S., Kathleen R. Makielski, M.S., Julianne L. Baron, B.S., James P. Zewe, B.S., Keith R. Mehalek, M.S., and Danushka S. Seneviratne, B.S., all of UPCI's Cancer Virology Program; James A. DeCaprio, M.D., and Larisa Litovchick, Ph.D., both of the Dana-Farber Cancer Institute; Patrick Schφffski, M.D., M.P.H., Maria Debiec-Rychter, M.D., Ph.D., and Agnieszka Wozniak, Ph.D., all of the Catholic University of Leuven in Belgium; and Nina Korzeniewski, Ph.D., of the University of Heidelberg School of Medicine in Germany.

This research was supported by Research Scholar Grant RSG-08-092-01-CCG from the American Cancer Society, the GIST Cancer Research Fund, The Life Raft Group and a number of private donations.


Story Source:

The above story is based on materials provided by University of Pittsburgh Schools of the Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Boichuk, J. A. Parry, K. R. Makielski, L. Litovchick, J. L. Baron, J. Zewe, A. Wozniak, K. R. Mehalek, N. Korzeniewski, D. Seneviratne, P. Schoffski, M. Debiec-Rychter, J. A. DeCaprio, A. U. Duensing. The DREAM complex mediates GIST cell quiescence and is a novel therapeutic target to enhance imatinib-induced apoptosis. Cancer Research, 2013; DOI: 10.1158/0008-5472.CAN-13-0579

Cite This Page:

University of Pittsburgh Schools of the Health Sciences. "Researchers target 'cell sleep' to lower chances of cancer recurrence." ScienceDaily. ScienceDaily, 1 August 2013. <www.sciencedaily.com/releases/2013/08/130801113154.htm>.
University of Pittsburgh Schools of the Health Sciences. (2013, August 1). Researchers target 'cell sleep' to lower chances of cancer recurrence. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/08/130801113154.htm
University of Pittsburgh Schools of the Health Sciences. "Researchers target 'cell sleep' to lower chances of cancer recurrence." ScienceDaily. www.sciencedaily.com/releases/2013/08/130801113154.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) — The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Vaccine Trials to Start a in January

WHO: Ebola Vaccine Trials to Start a in January

AP (Oct. 21, 2014) — Tens of thousands of doses of experimental Ebola vaccines could be available for "real-world" testing in West Africa as soon as January as long as they are deemed safe in soon to start trials, the World Health Organization said Tuesday. (Oct. 21) Video provided by AP
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) — A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) — The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins