Featured Research

from universities, journals, and other organizations

Temperature alters population dynamics of common plant pests

Date:
August 1, 2013
Source:
Penn State
Summary:
Temperature-driven changes alter outbreak patterns of tea tortrix -- an insect pest -- and may shed light on how temperature influences whether insects emerge as cohesive cohorts or continuously, according to an international team of researchers. These findings have implications for both pest control and how climate change may alter infestations.

This is a tea tortrix moth on leaf.
Credit: Hiroshi Suenaga, a Kagoshima entomologist

Temperature-driven changes alter outbreak patterns of tea tortrix -- an insect pest -- and may shed light on how temperature influences whether insects emerge as cohesive cohorts or continuously, according to an international team of researchers. These findings have implications for both pest control and how climate change may alter infestations.

"While the influence of temperature on individual-level life-history traits is well understood, the impact on population-level dynamics, such as population cycles or outbreak frequency is less clear," the researchers report in today's (Aug. 1) issue of Science Express. Researchers currently use temperature to predict the number of generations that appear each year and the timing of the various insect life stages, which is critical for scheduling pest control.

"While we had a really good record of temperature and the number of cohorts that appeared each season, we had no clear understanding of the difference between distinct and continuous reproduction," said Ottar N. Bjørnstad, professor of entomology, biology and statistics, Penn State. "Understanding the timing of generations is important because typically insecticides work only during one or two of the life stages of these pests."

The researchers looked at more than 50 years of data on the tea tortrix and also developed an independent mathematical population model that can predict population dynamics under both constant and seasonally driven temperature regimes.

While the tea tortrix is native to Japan, many similar moths exist in North American including the spruce bud moth, grape berry moth, light brown apple moth and summer fruit tortrix.

The researchers, who also include William A. Nelson, associate professor of biology, Queens University, Canada, currently on sabbatical at Penn State, and Takehiko Yamanaka, senior researcher, National Institute for Agro-Environmental Sciences, Tsukuba, Japan, used long-term data on the population dynamics of the tea tortrix that span 51 years and more than 200 outbreaks. The data were collected every five days at the Kagoshima tea plantation in Japan.

This type of insect remains dormant during the winter and emerges once the temperature reaches a certain level in the spring. Because the first generation is triggered by this temperature increase, the insects emerge all at once.

"We found the tea tortrix data very interesting," said Bjørnstad. "Often in North America we have one or two discrete early cohorts because winter synchronizes them and later, we find a background of multiple generations at all times."

The tea tortrix starts out in this way, but the researchers found that desynchronization does not occur. Through the warm season, outbreaks become more and more synchronous and distinct from each other.

"When the temperatures are high, the reproduction rate is high and the developmental rate of the tea tortrix is high," said Bjørnstad. "The population grows very fast and becomes unstable. Above a certain temperature, the population numbers overshoot the carrying capacity and the population crashes. After a bit, another generation comes in."

To better understand how temperature influences tea tortrix and other insect populations, the researchers developed a mathematical population model that is based on the insect life cycle and the effects of temperature on individual stages, and used this to predict population dynamics.

"The model is developed to represent the biology of the insect," said Nelson. "It is realistic, fully developed and parameterized independently of the field data."

The model is based on laboratory data and is fully independent of the Japanese data set.

"We speculated that temperature might do something to population dynamics," said Bjørnstad. "We documented that temperature itself is destabilizing to the dynamics of this pest. This is the first clear demonstration that temperature has the ability to alter those dynamics, causing large cycles in the insect."

The researchers believe that these mechanisms have implications for what might happen faced with global warming. The cycles of infestations may become more violent and more frequent.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Journal Reference:

  1. William A. Nelson, Ottar N. Bjørnstad, and Takehiko Yamanaka. Recurrent Insect Outbreaks Caused by Temperature-Driven Changes in System Stability. Science, 1 August 2013 DOI: 10.1126/science.1238477

Cite This Page:

Penn State. "Temperature alters population dynamics of common plant pests." ScienceDaily. ScienceDaily, 1 August 2013. <www.sciencedaily.com/releases/2013/08/130801142327.htm>.
Penn State. (2013, August 1). Temperature alters population dynamics of common plant pests. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/08/130801142327.htm
Penn State. "Temperature alters population dynamics of common plant pests." ScienceDaily. www.sciencedaily.com/releases/2013/08/130801142327.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) — A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
The New York Times Backs Pot Legalization

The New York Times Backs Pot Legalization

Newsy (July 27, 2014) — The New York Times has officially endorsed the legalization of marijuana, but why now, and to what end? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins