Featured Research

from universities, journals, and other organizations

Scientists decipher structure of NatA, an enzyme complex that modifies most human proteins

Date:
August 4, 2013
Source:
The Wistar Institute
Summary:
Scientists have determined the structure of NatA, an enzyme complex that modifies one end of most human proteins and is made at elevated levels in numerous forms of cancer. Their findings, they believe, will allow them to create an inhibitor -- a potential drug -- that could knock out NatA in order to curb the growth of cancer cells.

The structure of NatA, an n-terminal acetyltransferase.
Credit: The Wistar Institute/Glen Liszczak

A team of researchers from Philadelphia and Norway has determined the structure of an enzyme complex that modifies one end of most human proteins and is made at elevated levels in numerous forms of cancer. A study in Nature Structural & Molecular Biology, led by researchers at The Wistar Institute, depicts the structure and the means of action of a protein complex called NatA. Their findings, they believe, will allow them to create an inhibitor -- a potential drug -- that could knock out NatA in order to curb the growth of cancer cells.

"NatA appears essential for the growth of cells and their ability to divide, and we can see elevated production of this enzyme in many forms of cancer" said Ronen Marmorstein, Ph.D., senior author, Hilary Koprowski, M.D. Professor, and leader of The Wistar Institute Cancer Center's Gene Expression and Regulation program. "Obviously, this is a particularly appealing drug target and we are currently leveraging our recent understanding of how the protein works to develop small molecules that will bind to and inactivate NatA."

NatA is a member of a family of N-terminal acetyltransferase (NAT) enzymes (or enzyme complexes) that modify proteins in order to control their behavior -- for example by turning proteins on, telling proteins where to move, and tagging proteins or the cell for destruction.

According to Marmorstein, NatA works with an amazing specificity for a particular sequence of amino acids -- the individual building blocks of proteins -- and unraveling the roots of that specificity has proven an alluring puzzle for scientists.

The Marmorstein laboratory has proven expertise in the study of acetylation enzymes, proteins that modify other molecules in the cell with an acetyl group "tag." In the cellular world, structure dictates function, and acetylation is a universal process for controlling protein behavior and gene expression in living organisms.

"Modifying protein structures is one way that our cells control how proteins function," Marmorstein explained, "and enzymes in the NAT family modify nearly 85 percent of human proteins, and 50 percent of these are modified by NatA."

According to Marmorstein, NatA operates in a complex of two proteins, an enzymatic subunit and an auxiliary partner. When they developed the structure of NatA -- by bombarding a crystallized sample of the enzyme with powerful X-rays -- they found how the auxiliary partner protein is crucial for turning the enzymatic subunit on.

Binding to an auxiliary protein causes a structural change in the enzymatic subunit that properly configures the active site of the protein -- the region of the protein where the chemical reaction occurs -- essentially acting as a switch that activates the enzyme.

"When it binds to its auxiliary protein, the enzymatic subunit of NatA actually changes shape, reconfiguring the structure to allow it to properly grab its target protein N-terminal sequence for acetylation," Marmorstein said.

Importantly, others have found that NatA function is required for the proliferation of cancer cells. Marmorstein says, understanding the structure of NatA has allowed his team to better understand how to inactivate the protein in cancer cells. The structure has yielded targets for small molecules that will act as inhibitors, essentially stopping the protein by gumming up its structure.


Story Source:

The above story is based on materials provided by The Wistar Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Glen Liszczak, Jacob M Goldberg, Hεvard Foyn, E James Petersson, Thomas Arnesen, Ronen Marmorstein. Molecular basis for N-terminal acetylation by the heterodimeric NatA complex. Nature Structural & Molecular Biology, 2013; DOI: 10.1038/nsmb.2636

Cite This Page:

The Wistar Institute. "Scientists decipher structure of NatA, an enzyme complex that modifies most human proteins." ScienceDaily. ScienceDaily, 4 August 2013. <www.sciencedaily.com/releases/2013/08/130804144521.htm>.
The Wistar Institute. (2013, August 4). Scientists decipher structure of NatA, an enzyme complex that modifies most human proteins. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/08/130804144521.htm
The Wistar Institute. "Scientists decipher structure of NatA, an enzyme complex that modifies most human proteins." ScienceDaily. www.sciencedaily.com/releases/2013/08/130804144521.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) — President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) — Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) — Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) — President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins