Featured Research

from universities, journals, and other organizations

Making a mini Mona Lisa: Nanotechnique creates image on surface less than a third the hair's width

Date:
August 5, 2013
Source:
Georgia Institute of Technology
Summary:
Scientists have "painted" the Mona Lisa on a substrate surface approximately 30 microns in width -- or one-third the width of a human hair. The team's creation, the "Mini Lisa," demonstrates a technique that could potentially be used to achieve nanomanufacturing of devices because the team was able to vary the surface concentration of molecules on such short-length scales.

Mini Lisa. The world's most famous painting has now been created on the world's smallest canvas. Researchers at the Georgia Institute of Technology have "painted" the Mona Lisa on a substrate surface approximately 30 microns in width -- or one-third the width of a human hair.
Credit: Image courtesy of Georgia Institute of Technology

The world's most famous painting has now been created on the world's smallest canvas. Researchers at the Georgia Institute of Technology have "painted" the Mona Lisa on a substrate surface approximately 30 microns in width -- or one-third the width of a human hair. The team's creation, the "Mini Lisa," demonstrates a technique that could potentially be used to achieve nanomanufacturing of devices because the team was able to vary the surface concentration of molecules on such short-length scales.

The image was created with an atomic force microscope and a process called ThermoChemical NanoLithography (TCNL). Going pixel by pixel, the Georgia Tech team positioned a heated cantilever at the substrate surface to create a series of confined nanoscale chemical reactions. By varying only the heat at each location, Ph.D. Candidate Keith Carroll controlled the number of new molecules that were created. The greater the heat, the greater the local concentration. More heat produced the lighter shades of gray, as seen on the Mini Lisa's forehead and hands. Less heat produced the darker shades in her dress and hair seen when the molecular canvas is visualized using fluorescent dye. Each pixel is spaced by 125 nanometers.

"By tuning the temperature, our team manipulated chemical reactions to yield variations in the molecular concentrations on the nanoscale," said Jennifer Curtis, an associate professor in the School of Physics and the study's lead author. "The spatial confinement of these reactions provides the precision required to generate complex chemical images like the Mini Lisa."

Production of chemical concentration gradients and variations on the sub-micrometer scale are difficult to achieve with other techniques, despite a wide range of applications the process could allow. The Georgia Tech TCNL research collaboration, which includes associate professor Elisa Riedo and Regents Professor Seth Marder, produced chemical gradients of amine groups, but expects that the process could be extended for use with other materials.

"We envision TCNL will be capable of patterning gradients of other physical or chemical properties, such as conductivity of graphene," Curtis said. "This technique should enable a wide range of previously inaccessible experiments and applications in fields as diverse as nanoelectronics, optoelectronics and bioengineering."

Another advantage, according to Curtis, is that atomic force microscopes are fairly common and the thermal control is relatively straightforward, making the approach accessible to both academic and industrial laboratories. To facilitate their vision of nano-manufacturing devices with TCNL, the Georgia Tech team has recently integrated nanoarrays of five thermal cantilevers to accelerate the pace of production. Because the technique provides high spatial resolutions at a speed faster than other existing methods, even with a single cantilever, Curtis is hopeful that TCNL will provide the option of nanoscale printing integrated with the fabrication of large quantities of surfaces or everyday materials whose dimensions are more than one billion times larger than the TCNL features themselves.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Keith M. Carroll, Anthony J. Giordano, Debin Wang, Vamsi K. Kodali, Jan Scrimgeour, William P. King, Seth R. Marder, Elisa Riedo, Jennifer E. Curtis. Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography. Langmuir, 2013; 29 (27): 8675 DOI: 10.1021/la400996w

Cite This Page:

Georgia Institute of Technology. "Making a mini Mona Lisa: Nanotechnique creates image on surface less than a third the hair's width." ScienceDaily. ScienceDaily, 5 August 2013. <www.sciencedaily.com/releases/2013/08/130805131115.htm>.
Georgia Institute of Technology. (2013, August 5). Making a mini Mona Lisa: Nanotechnique creates image on surface less than a third the hair's width. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/08/130805131115.htm
Georgia Institute of Technology. "Making a mini Mona Lisa: Nanotechnique creates image on surface less than a third the hair's width." ScienceDaily. www.sciencedaily.com/releases/2013/08/130805131115.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins