Featured Research

from universities, journals, and other organizations

Self-healing solar cells 'channel' natural processes

Date:
August 7, 2013
Source:
North Carolina State University
Summary:
To understand how solar cells heal themselves, look no further than the nearest tree leaf or the back of your hand. Researchers have developed a regenerative solar cell that uses branching channels to best mimic natural processes.

The design of NC State’s regenerative solar cell mimics nature by use of microfluidic channels.
Credit: Image courtesy of North Carolina State University

To understand how solar cells heal themselves, look no further than the nearest tree leaf or the back of your hand.

Related Articles


The "branching" vascular channels that circulate life-sustaining nutrients throughout leaves and hands serve as the inspiration for solar cells that can restore themselves efficiently and inexpensively.

In a new paper, North Carolina State University researchers Orlin Velev and Hyung-Jun Koo show that creating solar cell devices with channels that mimic organic vascular systems can effectively reinvigorate solar cells whose performance deteriorates due to degradation by the sun's ultraviolet rays. Solar cells that are based on organic systems hold the potential to be less expensive and more environmentally friendly than silicon-based solar cells, the current industry standard.

The nature-mimicking devices are a type of dye-sensitized solar cells (DSSCs), composed of a water-based gel core, electrodes, and inexpensive, light-sensitive, organic dye molecules that capture light and generate electric current. However, the dye molecules that get "excited" by the sun's rays to produce electricity eventually degrade and lose efficiency, Velev says, and thus need to be replenished to reboot the device's effectiveness in harnessing the power of the sun.

"Organic material in DSSCs tends to degrade, so we looked to nature to solve the problem," Velev said. "We considered how the branched network in a leaf maintains water and nutrient levels throughout the leaf. Our microchannel solar cell design works in a similar way. Photovoltaic cells rendered ineffective by high intensities of ultraviolet rays were regenerated by pumping fresh dye into the channels while cycling the exhausted dye out of the cell. This process restores the device's effectiveness in producing electricity over multiple cycles."

Velev, Invista Professor of Chemical and Biomolecular Engineering at NC State and the lead author of a paper in Scientific Reports describing the research, adds that the new gel-microfluidic cell design was tested against other designs, and that branched channel networks similar to the ones found in nature worked most effectively.

Study co-author Dr. Hyung-Jun Koo is a former NC State Ph.D. student who is now a postdoctoral researcher at the University of Illinois. The study was funded by the National Science Foundation and the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hyung-Jun Koo, Orlin D. Velev. Regenerable Photovoltaic Devices with a Hydrogel-Embedded Microvascular Network. Scientific Reports, 2013; 3 DOI: 10.1038/srep02357

Cite This Page:

North Carolina State University. "Self-healing solar cells 'channel' natural processes." ScienceDaily. ScienceDaily, 7 August 2013. <www.sciencedaily.com/releases/2013/08/130807115626.htm>.
North Carolina State University. (2013, August 7). Self-healing solar cells 'channel' natural processes. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2013/08/130807115626.htm
North Carolina State University. "Self-healing solar cells 'channel' natural processes." ScienceDaily. www.sciencedaily.com/releases/2013/08/130807115626.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins