Featured Research

from universities, journals, and other organizations

Fast detector for a wide wavelength range

Date:
August 8, 2013
Source:
Helmholtz-Zentrum Dresden-Rossendorf
Summary:
Free-electron lasers are extremely versatile research tools because their intense, super short light flashes permit a closer look at new materials and even biological molecules; thus, allowing effects to be observed that had not been known previously. For pulsed lasers in the far infrared range, the so-called terahertz range, scientists have developed a robust and fast detector which can measure the arrival of a terahertz pulse with great accuracy.

Two free-electron lasers at the HZDR deliver short and intense terahertz pulses.
Credit: HZDR/Bierstedt

Free-electron lasers are extremely versatile research tools because their intense, super short light flashes permit a closer look at new materials and even biological molecules; thus, allowing effects to be observed that had not been known previously. For pulsed lasers in the far infrared range, the so-called terahertz range, scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have developed a robust and fast detector which can measure the arrival of a terahertz pulse with great accuracy. The results were published in the scientific journal Applied Physics Letters.

Related Articles


Every individual pulse coming from the Helmholtz-Zentrum Dresden-Rossendorf's Free-Electron Laser (FEL) consists of countless light particles. For many experiments, it's very important to know the precise arrival time of these light pulses. The elapsed time in-between these short light flashes that last only for ten picoseconds, i.e. a ten trillionth of a second, is actually 77,000 picoseconds long. If this elapsed time were transferred to spatial dimensions, then the distance between two pulses would translate into almost eight kilometers. This distance needs to be examined in order to determine the arrival time of a light pulse which would barely be a meter long in this comparison.

Together with scientists from the University of Regensburg, physicist Martin Mittendorff and his colleagues from the HZDR managed to develop, build, and test a reliable detector to measure the time in the terahertz range at free-electron lasers. This technology can be applied in all comparable FELs. It is based on a tiny flake of graphene, a material from which a veritable research boom has arisen since its discovery and for which the Nobel Prize was awarded in 2010. The list of applications for this material - consisting of a layer of carbon which is exactly one atom layer thick -, which seems to have been created especially for the new technologies, is getting constantly longer. Graphene is not just thin, transparent, and stable; it can also absorb light in the invisible infrared range and electrons can move very quickly through the material.

"The ability of graphene to absorb light particles over a very wide wavelength range was a prerequisite for our robust detector that even works at room temperature. The high mobility of electrons in graphene actually permits the high speed," explains Martin Mittendorff from the HZDR. In order to direct the light pulses onto the flake which is no bigger than the tip of a pencil, it is also necessary to use a special antenna. Once the detector concept had been established, physicist Josef Kamann from Professor Dieter Weiss's workgroup at the University of Regensburg built the first prototype. The detector proved to be fast and consistent in all the tests carried out at the HZDR's Free-Electron Laser. In the past, it was difficult to adjust the laser pulses because fast and simple detectors for FEL radiation did not exist in the terahertz range. Especially since most of the fast detectors are limited to a narrow wavelength range and not applicable for large sections of the mid and far infrared range like the HZDR's detector which is based on graphene. Martin Mittendorff and his colleagues are now developing their system further so that it will cover an even wider wavelength range, starting with ultraviolet light and going all the way into the far infrared range.

In particular, when it comes to so-called pump-probe experiments, researchers can really benefit from the new device because they need light from two different laser sources which they then have to synchronize to one another with the greatest precision. The ELBE Center for High-Power Radiation Sources in Rossendorf provides many opportunities for using this newly developed detector system because here, two free-electron lasers (FELBE) with terahertz and/or infrared radiation are united under one roof with the innovative TELBE source which will expand the available spectral range of the terahertz radiation considerably in the HZDR over the next couple of years.


Story Source:

The above story is based on materials provided by Helmholtz-Zentrum Dresden-Rossendorf. Note: Materials may be edited for content and length.


Journal Reference:

  1. Atsushi Ikeda-Ohno, Christoph Hennig, Stephan Weiss, Tsuyoshi Yaita, Gert Bernhard. Hydrolysis of Tetravalent Cerium for a Simple Route to Nanocrystalline Cerium Dioxide: An In Situ Spectroscopic Study of Nanocrystal Evolution. Chemistry - A European Journal, 2013; 19 (23): 7348 DOI: 10.1002/chem.201204101

Cite This Page:

Helmholtz-Zentrum Dresden-Rossendorf. "Fast detector for a wide wavelength range." ScienceDaily. ScienceDaily, 8 August 2013. <www.sciencedaily.com/releases/2013/08/130808124217.htm>.
Helmholtz-Zentrum Dresden-Rossendorf. (2013, August 8). Fast detector for a wide wavelength range. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/08/130808124217.htm
Helmholtz-Zentrum Dresden-Rossendorf. "Fast detector for a wide wavelength range." ScienceDaily. www.sciencedaily.com/releases/2013/08/130808124217.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Magnetic Motors, Not Cables, Power This Elevator

Magnetic Motors, Not Cables, Power This Elevator

Newsy (Nov. 28, 2014) Imagine an elevator without cables. ThyssenKrupp has drafted an elevator concept that would cruise on linear magnetic motors. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins